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SUMMARY

This final report coversthe9-year researchon future tetherapplicationsandon the

actualflightsof theSmallExpendableDeploymentSystem(SEDS)asdescribedbriefly in

thefollowing.

In order to keepthe sizeof the report at a manageablelevel, the highlights of the

researcharepresentedherewhile the interestedreadercanobtainall thenecessarydetails

from the 34 quarterly reports that havecovered systematicallyour researchactivity

throughoutthiscontract.

This final reportis subdividedaccordingto themajortopicsof investigationasfollows:

(1) Computer codes for the dynamics of tethered systems

(a) Description of numerical codes MASTER20 and MASTERDEP0 to simulate the

orbital and attitude dynamics of tethered systems during station keeping and deployment

maneuvers; (b) algorithms to estimate orientation, angular rates and angular accelerations of

SEDS-I endmass from instruments' data; (c) algorithms to validate SEDS-I endmass

data.

(2) Comparison of various tethered system simulators

Design of test case situations; simulation by various groups; comparison of results.

(3) Variable-g/micro-g laboratory tethered to the Space Station

(a) Dynamics analysis; (b) Conceptual design; (c) Investigation of potential

applications; and (d) Propagation of disturbances and isolation from noise of a variable-

gravity/micro-gravity laboratory tethered to the Space Station. A single tether and a dual

tether configuration are analyzed.

(4) Tethered space centrifuge

Investigation of the stability, the acceleration noise, and the suitability of the

acceleration levels for human habitation of a l-km-long tethered centrifuge in low Earth

orbit. Analysis of the dynamics of the centrifuge during the spin-up and spin-down

phases.



(5) Two-dimensional structures with tethers

Various two-dimensional tethered structures for low Earth orbit are proposed for use as

planar array antennas. The stability of the structures is investigated and the system

parameters for specific mechanisms of stabilization are computed.

(6) Tethered high-gain antennas

Conceptual design of a travelling wave antenna for transmission from space of

ELF/VLF waves to the ground. Analysis of a V-shaped antenna, which consists of two

long tethers in the same orbit separated by a distance, for the reception of HF emissions

from outer space.

(7) Propagation of ELF waves into the ionosphere

Development of a method for the numerical calculation of the electromagnetic wave

field on the Earth's surface associated with the operation of an electrodynamic tethered

satellite system of constant or slowly varying current orbiting in the ionosphere.

(8) Reentry of tethered capsules

Dynamical and thermal analysis of the reentry of a capsule with an attached heat-

resistant tether which slows clown the reentry at high altitudes and reduces drastically the

maximum temperature experienced by the capsule. The results of these type of reentry are

then compared to a reentry without tether and to a reentry with a low-melting-point tether

(i.e., reentry of SEDS-I).

(9) Deployment dynamics of SEDS-I

Simulation of the position and satellite attitude dynamics of SEDS-1. Deployment

simulations for different values of the tension model parameters. Identification of the

upper limits of the minimum friction in the deployer for a successful deployment.

(10) Analysis of SEDS-I flight data

(1) Analysis of magnetometer data; (2) Estimation of attitude determination accuracy

from instrument data; (3) Computation of attitude rates; (4) Validation of load cells and

magnetometer data v, ith accelerometer readings; (5) Post-flight simulation of SEDS-I



deploymentby usingtheCarrolltensionmodelandadjustingtheparametersto fit theflight
data.

(11) Dynamics and Control of SEDS-II

(1) Development of a closed-loop control law for SEDS-2 for providing a small libration

amplitude and a low tether exit velocity at the end of deployment; (2) Analysis of the

robustness of the closed-loop deployment control law with respect to tension model errors

and actuator errors.



INTRODUCTION

This is the Final Report submitted by the Smithsonian Astrophysical Observatory

(SAO) under NASA/MSFC contract NAS8-36606, "Analytical Investigation of Tethered

Constellations in Earth Orbit (Phase II)." This report covers the period of activity from 22

February 1985 through 31 March 1994. The Principal Investigators (PIs) for this contract

have been E.C. Lorenzini, M.L. Cosmo, G.E. Gullahorn, and Robert D. Estes.

This final report presents the highlights of the research conducted through the 9-year-

long activity while the interested reader is referred to the 34 quarterly reports of this

contract for a much more detailed description of the project. Whenever possible, the

papers published under this contract have been incorporated into this report. The papers

have the advantage of providing a more concise description than the quarterly reports.

Moreover, the refereed papers have the added advantage of having been formally reviewed.



1.0 COMPUTER CODES FOR THE DYNAMICS OF TETHERED SYSTEMS

The development of software has been a major effort throughout the whole course of

the study. The purpose of the software developed can be divided in two main areas:

1 ) Simulation of the dynamics of orbiting tethers.

2 ) Data analysis of tether flight conditions from instrumentation data

1.1 Tether Dynamics Simulators

Two codes have been written two simulate the dynamics of spaceborne tethers:

MASTER20 and MASTERDEP0. MASTER20 was originally written to simulate the

three-dimensional dynamics of the microgravity/variable gravity laboratory.

MASTER20 has been extensively used afterwards to simulate various other

applications like artificial gravity and tether-initiated reentry. MASTERDEP0 is a further

refinement of MASTER20. It can simulate tether deployment as it was originally

developed to simulate SEDS deployments and the attitude dynamics of the end-mass. The

numerical integration of SEDS- 1 flight provided a very good fit of the flight data as shown

in Section 10.

Moreover, we used MASTERDEP0 to analyze the complicated attitude dynamics of

SEDS' end-mass. The results of this analysis have been included in a paper submitted for

publication to Acta Astronautica. In the same paper, a passive device for reducing the

amplitudes of attitude oscillations is also presented and its effectiveness assessed. A copy

of the paper is shown in Section 9.

Both codes model the tether as well as the platforms as lumped masses connected by

massless spring-dashpot systems to simulate tether elasticity and sn'uctural damping.

Each lump is acted upon by tensional, aerodynamic and gravitational forces.

MASTER20 drag force adopts a dynamic Jacchia 1977 neutral density model and

MASTERDEP0 adopts the Mass Spectrometer Incoherent-Scatter-1986 (MSIS-86) model.

The gravitational forces include the second zonal harmonic of the gravity field (J2 term).



MASTER20andMASTERDEP0alsosimulatethethermaleffectson thetensiondue

mainly to the terminatorcrossings,aswell as the Earth'salbedoand IR radiation. An

improved version of MASTER20 includes aerodynamic heating to simulate low orbiting

probes and tether reentry conditions.

The code's integrator routine is a fourth-order Runge-Kutta with adjustable stepsize.

This routine has proven to be reliable, even if not fast, under very demanding numerical

situations such as deployment with many lumps and tension discontinuity due to thermal

shocks.

In MASTERDEP0 the deployment maneuver is simulated by placing a new lump

close to the deployer along the unit vector connecting the deployer to the closest old lump

with the same deployer velocity plus a term that takes into account the relative motion

between the last two lumps. The integration is then stopped, the new system state vector is

updated for the new lump and the integration is started again until the final length is

reached.

The platform attitude dynamics is computed by integrating the kinematics and the

Euler equations. The kinematics equations express the time evolution of the Euler angles

with respect to the inertial frame (3-1-3 rotation sequence). The Euler equations relate the

time derivative of the angular rates to the extem',d torques.

The torques considered are related to the tether visco-elastic force, the gravity

gradient, the aerodynamic drag and attitude control.

The codes run on a VAX-780, MicroVax, Apple Macintosh and Sun Spare Station-2.

1.2 Data Analysis Software

Several programs were written to analyze and validate SEDS flight data. Additional

software was written to compare the flight data to theoretical models.

OUEST Program

One of the main objective in SEDS data analysis was the estimation of the end-mass

orientation. To this end we wrote the program QUEST that adopts QUEST (QUaternion

ESTimation) and Triad (algebraic method) algorithms to estimate the attitude matrix A.

Quest algorithm uses a set of N observations at each time to compute the attitude matrix A



given a quaternionssetq that minimizes in a least square sense the cost function L(A)

(Wahba's function):

N

L(A) = Ek aklwk - AEkl2
I

where:

N = number of sets of unit vector observations

ak = weights = 1/Ok 2 (o= measurement standard deviation)

wk = k-th set of unit vector observation in the body reference frame)

v_k = k-th set of unit vector representation with respect to the reference frame.

The Triad algorithm instead uses only two reference vectors to determine the three

Euler angles. Even though this is not an optimal method it can be easily implemented to

check Quest results.

Both algorithms have been extensively used in the past to estimate spacecraft

orientation. On the other hand the definition of the vector observations has posed a

challenging problem. 111order to estimate the orientation of a rigid body two reference

vectors are needed. In SEDS case only the magnetometer was dedicated to such

measurements using the geomagnetic field as the reference. As a second vector, we have

adopted the "tether" direction vector. Specifically, the direction of the line connecting the

end-mass to the deployer has been compared to the load cell unit vector.

A thorough analysis of the errors affecting the vector measurements was needed to

characterize the attitude covariance.

The vector measurement error Ovec can be written as

O2vec = O2mod + O2meas

where

Omod = modeling error

Omeas = instrument's measurenlent error

The magnetometer modeling error takes into account:
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a) theerror in theknowledgeof thestrengthandorientationof theEarth's

magneticfield

b) theerror in thecomputationof thereferencemagneticfield dueto theknowledge
of theend-massorbitalposition

Theloadcellsmodelingerrortakesintoaccountthat:

a) the line connectingthetwoend-platfermsdoesnotcoincidewith thedirectionof

thetensiometerbecauseof thebowingof thetether

b) thedirectionof theunit vectorconnectingthetwo end-platformsis affectedby the
knowledgeof theend-platformspositions.

The magnetometerand load cells instrument error is 9.3 mGaussand 10 mN,
respectively.

Theexpressionsof thecovariancematricesfor TRIAD andQUESTalgorithmsare
notreportedherefor thesakeof brevity.

Olher Soflware

During the course of the analysis we also wrote software to validate and check the

end-mass instrumentation's data.

Namely we developed:

1) Least-square estimator of the magnetometer bias

2) Estimation of the end-mass angular rates.

3) Comparison of the estimated angular acceleration with the accelerometer's data:

A = A -T(.TJM) = d___Jdt x 12+ co x (co x 12)

where A and T are the accelerometer and load cells signal, respectively, M the satellite

mass, co the angular rates and 12_the accelerometers' body coordinates.

The results of the estimation of SEDS-1 end-mass orientation and data validation are

presented in Section 10.

8



4) FFr routineto analyzeinstruments'data

5) Computationof theoretical oscillations modesfrom tension and length data,

namely:

a)First threelater_ ("string")modes

b) Spring-massmode

c) Pitch(e.g.end-massattitude)mode.



2.0 COMPARISON OF VARIOUS TETHERED SYSTEM SIMULATORS

Several tasks were performed to support the Tether Applications Simulation Working

Group (TASWG). Only the second task (the test case comparison) is discussed here. The

other two tasks, and more detail on the test cases, are given in an Interim Report included

in Quarterly Report # 16.

First, a questionnaire soliciting information on current or planned tether simulation

programs was widely circulated. The responses were summarized in a table.

Second, a set of "test cases" was defined to allow comparison of the attempts of various

programs to simulate the same physical situations. These cases were simulated by a

number of program authors, including SAO with the program SKYHOOK. An extensive

set of plots is presented showing the agreements and differences among the results.

Spectral analyses are and differences among the results. Spectral analyses are also given.

Third, "analytic" results were discussed which a simulator author might wish to use for

validating a program. A bibliography was given. Only the second task (the test case

comparison) is discussed here. The other two tasks, and more detail on the test cases, are

given in an Interim Report included in Quarterly Report #16.

2.1 Test Cases: Comparison of Results

Four test cases were designed. The salient features are described in the following

section, while more detailed specifications are given in Quarterly Report #16. The physical

characteristics of the system are similar to those of TSS-1. A 20 km deployed length (TSS-

1 nominal) is used in three cases, while one case uses a 100 km deployed length. None of

the cases employ tether reel motion, i.e. the tether natural length remains fixed.

The tether is assumed to be idealized viscoelastic -- i.e. obeying a Hooke's law for

tension due to stretching, and having a damping force proportional to the velocity of

deformation. This assumption, particularly on the damping force, may not be very realistic

(Carroll, private communication; Xe and Powell, 1988), but it does allow an unambiguous

and simply treated internal force model. As far as is known, no simulator uses a different

elasticity model.

Results were obtained from six simulators. GTOSS results were provided by David

Lang of Lang Associates. STOCS results were provided by Roger Wacker of Lockheed

Engineering and M:magement Services Company, Inc. SKYHOOK simulations were
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performedat SAO by GordonGullahorn. PeterBainumof Howard University provided

resultsfrom anunnamedsimulatorwhich we refer to asHOWARD U. Arun Banerjeeof

LockheedMissilesandSpaceCompanyprovidedresultsfrom a simulator"Tether",which

arereferredto asLOCKI IEED.Arun Misra of McGill Universityprovidedresultswhich

we refer to by McGILL U. (John Glaese of Control Dynamics Company provided results

for one case; unfortunately, resources did not peru-fit translation from the format provided.)

A preliminary report of the test case findings was made at a workshop associated with

the Second International Conference on Tethers in Space ("Space Tethers for Science in the

Space Station Era") in Venice, October 1987. Additional and corrected results are included

here.

2.2 Comparison Piols and Discussion

The results for the four test cases are plotted in the next section. The plots consist of

time series of the variables: radial, in-plane and out-of-plane position of the satellite with

respect to the Shuttle; the respective velocities; and in cases A and C, the direction cosines

of the satellite axes with respect to the radial/in-plane/out-of-plane axes. Plots of variables

which do not vary (e.g. out-of-plane motion where not excited) or which reproduce other

variables (some angular variables) are omitted to save space.

Because all the cases except B remain essentially in a vertical (radial) configuration, the

radial position for these cases is "normalized" by subtracting the first value for each

simulator from the successive values. This makes the labels on the left margin easier to

interpret. Also, the different simulators had different mean values for the radial

component, which could overwhelm the more interesting time variations if plotted on an

absolute scale.

Note that the in-plane velocity has an offset due to the way in which velocities were

specified: as the difference of absolute spatial velocities of the satellite and shuttle,

projected onto the in/out/radial axes. A more intuitively meaningful velocity would have

been to project the relative positions onto the axes, and take the time derivatives of these.

The other velocities are also not the same as the more intuitive definition would provide; the

difference is less pronounced because of the vertical configuration of the tether in three of

four cases.

Most of the plots follow a common format: results from all simulators which

participated in a given case are given on a separate plot for each applicable variable, with

ll



thesimulatorsdistinguishedby line type. (A key to theline typesis atthebeginningof the

plots.) The caseand variableareat thetopof theplot. Theplots aregivenin theorder

theyarediscussedbelow.

CASE A:

The satellite is deployed at 20 km in hanging equilibrium, and has attitude dynamics. It

is given an initial impulse orthogonal to the tether in the orbital plane, to produce an initial

center of mass velocity of 0.2 m/s. Output was requested every second for the first 1000 s,

and every 5 s for 5000 s. Possible phenomena which might be exhibited: in-plane

libration, transverse tether oscillations, and coupling of these transverse oscillations with

rigid body motions.

Three simulators -- SKYHOOK, GTOSS and STOCS -- provided results including

satellite attitude. SKYHOOK, due to run time restrictions, only simulated the first 763 s.

McGill University provided results, although their simulator does not include satellite

attitude.

First, plots for the full 5000 seconds are shown. Selected plots restricted to 1000

seconds are shown following these to more clearly show the SKYHOOK behavior.

The situation specified should restrict the system to motion in the orbital plane. All four

simulators successfully passed this "null test" and out-of-plane plots are not shown. Rigid

body motion was also restricted to one angle. The cosine of the angle Oty between the

satellite "radial" axis (originally in the radial or vertical direction) and the in-plane axis of

the orbital coordinate system, is plotted: this is nominally 90 ° , and small departures of the

cosine from zero are proportional to the angle between the satellite and reference vertical

axes.

Agreement among the various simulators is seen to be quite reasonable for a case of this

complexity, except for the radial component of the McGill results, which is plotted

separately. The McGill radial oscillations are much larger (about 10 m) than those for the

other simulators (about 0.3 m for SKYHOOK, and 0.05 m superposed on a slow 0.5 m

baseline variation for STOCS and GTOSS). This might be due, for instance, to starting the

simulation with a tether stretched beyond equilibrium.

The similarity between the STOCS/GTOSS results (which used the same basic engine)

and SKYHOOK on the angular variation are encouraging. To achieve this agreement,

12



however,theSKYHOOK input hadto beadjusted:thefirst trial hadusedoutputgenerated

by aprogramwhich in thecasewith afinite satellite(asopposedto pointmasssatellite)left

thetetheroverstretched,resultingin apronouncedexcitationof radial (longitudinal,axial)

modes. This coupledwith the attitudeoscillations,leading to a gradual but substantial

buildup of their magnitude.

CASE B:

A point mass satellite at the end of a 20 km tether is initially at rest in the system rotating

with the Shuttle, with the tether in a linear configuration, 45 ° out of plane, under zero

tension. The system is "released" and allowed to swing freely. This case may be expected

to demonstrate tether longitudinal modes, particularly bobbing, and coupling of in-plane

and out-of-plane iibrations.

Results were provided by all simulators except McGill University. The substantial out-

of-plane libration indeed coupled to provide significant in-plane libration. On the plots

showing the full motion, the different simulations are so close as to be almost

indistinguishable. The scale is so large, however, that moderate disagreement could exist.

One set of results (GTOSS) was arbitrarily chosen and the other results were different with

respect to GTOSS and plotted; i.e., at each time, the value plotted is that from a given

simulation minus that from GTOSS. Three plots showing the difference position variables

follow the standard plots for case B. As can be seen, the various results begin in close

agreement and gradually drift away from the GTOSS results with an overall slow

oscillation, reaching magnitudes of 10's to 100 or so meters by the finish of the simulation

(about 1 orbit).

CASE C:

The system has a 20 km tether and a satellite with attitude dynamics. Starting from

hanging equilibrium, the initial conditions are obtained by (a) tilting the satellite about the

tether attachment point by 45 ° in the positive out-of-plane direction, and (b) imparting an

initial velocity parallel to the tether. This case might be expected to demonstrate coupling of

(large) satellite attitude oscillations with tether tension variations (spring-mass and

longitudinal modes).

Results were obtained from STOCS and GTOSS for 1000 s, and from SKYHOOK for

about 500 s (restricted due to long run times). The radial components show similar

oscillations, with SKYHOOK about two to three times as large as GTOSS/STOCS results.

13



GTOSSandSTOCSshowsomeout-of-planemotion,aboutasatelliteradius;theperiodis

much longerthanexpectedattitudeoscillations,andits sourceis not clear. GTOSSand

SKYHOOK show similar trendsof in-planemotion,but different magnitudes;STOCS
showsa different trend,of similar magnitude.Lang (privatecommunication)reportsthat
thedifferencesbetweenSTOCSandGTOSShavebeenresolved.

All nine direction cosinesof the satelliteattitude areplotted. STOCSand GTOSS

generallyshowsimilar character,thoughtheydiffer in detailsand sometimesin the long
term trend.SKYHOOK resultsshowa differentoverall characterfrom theother two. In

particular,theSKYHOOKresultsgenerallyshowanincreasein theshortperiodoscillation

magnitudetoward the endof thertm, while theother resultsshow a generallyconstant

oscillation superposedona baselinetrend. Thiscouldbe aresultof couplingbetweenthe

attitudeoscillationsandthehighermodesof longitudinaltetheroscillation.This difference

will befurthercommentedon in thesectiononpowerspectraldensities.It is interestingto

notethevarietyof distinctivebehaviorsof theattitudevariables.

CASE D:

The system has a point mass satellite and deployed tether length of I00 km. An impulse

is applied to the satellite to generate a AV of 0.5 m/s in a direction perpendicular to the

tether and 45 ° out-of-plane. Phenomena of interest might include in-plane and out-of-plane

libration, transverse tether oscillations, and the different frequencies of in-plane and out-of-

plane transverse modes due to a restoring force toward the orbital plane (this effect

becomes significant only when tether mass is substantial compared to satellite mass).

All six programs ran the simulation, making this case interesting for the completeness of

its response. (Only lbur provided velocity information, SKYHOOK and LOCKHEED

lacking this output.)

There is a general differentiation of the simulators into two classes, also apparent in the

less well represented cases. Notice that although the overall variations in the in-plane

component are comparable, three simulators show smooth variation (GTOSS, STOCS and

HOWARD U) while three have a superposed rapid oscillation (SKYHOOK, LOCKHEED

and McGILL U). This same distinction is apparent in the two plots of normalized radial

component: the first, smooth, class shows variations of only a meter or two, and rapid

oscillations of only about 0.2 m (GTOSS and STOCS) or 1 m (HOWARD U); the second,

rougher, class must be plotted separately, since they show oscillations of hundreds of

meters anaplitude. The out-of-phme component shows similar results, only now McGILL

14



U joins the "smooth"class. Note that on the out-of-planeplot, GTOSSandSTOCSare
indistinguishable.

Onefinal setof plots is showndisplayingthedifferencesbetweentwo differentusesof

the sameprogramto attemptsimulation of the samecases. For casesA and D (which

involved an "impulse" to the satellite), McGILL U performed simulations (a) by having a

thruster modelled in the satellite fire briefly, and (b) by giving the satellite an equivalent

initial velocity (AV), as if the thruster firing were brief but powerful. The moderate, but

still noticeable, differences are displayed without further comment; the dotted lines

represent the results where thrusters are used.

2.3 Time Series Plots

This section contains the time series plots discussed above. As feasible, the results from

several simulators are presented on one plot, with a universal line-type key given by:

SIMULATOR / LINE TYPE KEY

GTOSS

STOCS

SKYHOOK

HOWARD U

LOCKHEED

McGILL U

15
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2.4 Power Spectral Density of Simulator Results

Direct plots of time series of selected aspects (e.g. satellite position) of simulator results

(or any other "data") are one of the most obvious ways to examine the system behavior.

Another window into this behavior is provided by spectral analysis of these time series.

Spectral methods provide at least two insights:

Tethered systems, as most mechanical systems, can be largely considered as a linear

system. (Non-linearities, for instance the interaction of the satellite attitude with the tether

tension variations, are generally dominated by the linear aspects and form small

perturbations to linearity.) Linear systems possess distinct frequencies of natural vibration

(modal frequencies, or eigen-frequencies) and associated modal shapes; any unforced

vibration will be a superposition of these shapes/frequencies. Spectral analysis of simulator

results will show sharp peaks at a set of frequencies which can be compared to those

expected on theoretical bases, either generally (e.g., we expect a satellite oscillation, a

spring-mass longitudinal frequency, and a series of column-mode longitudinal frequencies)

or by comparing to numerically predicted modal frequencies. Lack of expected modes can

point out limitations or restrictions of the simulator's model, while reproduction of

predicted frequencies could provide a numerical measure of one aspect of a simulator's

accuracy (unless the simulator is more accurate than the idealized theoretical model!).

A second aspect which spectral analysis can highlight is the more general behavior of a

simulator's results. Often one looks at the time series plot and makes a comment along the

lines of "simulator A appears smoother than B, i.e. B looks like it has more short time scale

variability." This may be more directly, and less vaguely, seen by looking at the power

spectral density (PSD) plots and noting that B is stronger at higher frequencies. The PSD

also allows some analysis of the source: if the high frequency strength of B is primarily at a

few spectral "lines" (narrow peaks), this is probably due to B successfully modeling

(presumably) physical modes of vibration that A misses; while if it is a fairly level high

"baseline", then the high frequency behavior is likely due to some "noise", such as

roundoff or truncation error in the program or output digitization.

An appropriate means of looking at strength vs. frequency in the "data" (simulator

output) is to compute a power spectral density (PSD). In broad outline, the discrete Fourier

transform (DFT) of the data sequence is computed (usually with a fast Fourier transform,

or FFT, algorithm); this gives a set of complex values at a discrete set of points in
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frequencyspace.The magnitudesquaredof this spectrumis thenthePSD. Moredetails

aregiven in Quarterly#14of this contract,andcanalsobe found in Press,et al., (1986,
Sec. 12.7).

A numberof samplePSDplots areshownin the next sectionfor casesA, C and D.
Brief discussionof afew of theseis below.

CASE A:

First, plots are shown of PSDs of the radial component and the single distinct direction

cosine comparing SKYHOOK and GTOSS results (the line type key is the same as for the

time series plots). The angular variable shows only one "line", corresponding to the

satellites mode of oscillation about its center of mass, and the two simulators agree closely

in this frequency domain just as they did in the time domain. For the radial component,

both show a sharp line at low frequency, at very nearly the same frequency; SKYHOOK,

however, displays a series of lines at progressively higher frequencies, corresponding to

internal "bar mode" oscillations of the tether. The baseline behavior of the two is close, so

the differences apparent in the time series plots are due primarily to the extra modes

modeled by SKYHOOK. The absence of higher modes in the GTOSS results implies that

the simulation was made without any nodes along the tether, nor with higher modes if the

modal model was used. Note also that the first internal mode, at about 0.1 Hz, is very close

to the satellite attitude oscillation in frequency; this is probably the vehicle for the coupling

noted when SKYHOOK was accidentally run with a large initial longitudinal oscillation.

Due to the limited SKYHOOK run, only 256 points could be used in the above PSDs.

GTOSS results allowed 512 point PSDs with correspondingly higher resolution; plots are

given, comparing the first and last 512 points, which agree closely.

CASE C:

Recall that the time series plots of angular variables in case C showed widely differing

character. Without comment, 512 point PSDs of GTOSS results for a number of these

variables are shown, and obviously differ widely. Comparisons of SKYHOOK and

GTOSS are also shown.
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CASE D:

This case had all six simulators respond. Comparison PSD plots are shown. Note the

variety of spectral lines shown, and the differing high frequency baselines, particularly for

the radial component.

2.5 PSD Plots

The PSD plots are on the next four pages.
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2.6 Conclusions

The results from the various simulators when applied to a set of test cases showed both

encouraging agreement and disheartening and sometimes puzzling disagreement. The

disagreement generally appears to be due to failure to unambiguously specify and

implement the physical situation intended, or due to predictable limitations of the model

used, rather than to "error". Display in the spectral domain via PSD helps understand the

sources of disa_,qeement.

Several comments should be made with regard to the test cases chosen and their use.

First, on the complexity of the cases chosen. On the basis of several teleconferences

and material supplied by the test case subcommittee, two factors were deemed of prime

importance: (a) a small number of cases so that the comparison runs might actually be

made, and (b) inclusion of simulations that would depend on a wide variety of non-trivial

phenomena. Additionally, cases were chosen on the basis of being, typically, capable of

being set up as small changes from simulations which could be routinely run, e.g. starting

from a hanging equilibrium state.

In retrospect, this philosophy is seen to have two pitfalls. First, since several

phenomena often interact in one simulation and since some of the phenomena have no

readily available theoretical results (e.g., coupling of in-plane and out-of-plane libration for

large angles), the "expected" results are known only vaguely if at all. Second, again

because of the complexity of the cases, when (as was the case for all except case B) the

simulations do not agree it becomes difficult to determine the causes of the disagreement

and which simulation is more "correct".

A more practical philosophy for the choice of test cases would have a larger number of

cases, each isolating one single phenomena, considering simpler, linearized effects before

complex interactions. This is typically the way in which a developing simulator should be

verified, though all too often it appears not to be carried out rigorously. These would often

involve theoretically expected results, and be more in the line of validation against analytic

solutions as discussed in Quarterly Report #16. What would be of interest, though not

feasible in the current effort, would be to obtain results from various simulators to observe

the effort (CPU hours?) required to simulate a certain effect with given accuracy.

The second point is that disagreement in simulator results can come about in several

ways: (a) the program or model may be faulty, leading to incorrect computation, (b) the
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situation simulated may not be what was requested or intended, due to either poor

specification, faulty input, or exceeding the range of the simulator, (c) the output may be

misinterpreted. In the ultimate goal of obtaining answers to posed questions, problems with

setup or interpretation are just as incorrect (though less fundamental) as problems with

computation. One must consider success of the whole system (user + operator + program)

in predicting the evolution of a physically specified situation.

Related to this, and apparent from our experience with the test case exercise, is the

difficulty in specifying and implementing unambiguously a physical situation to be

simulated. There is a sign difference in the angle variable output between SKYHOOK and

GTOSS (and the similar STOCS).

One disturbing aspect of the whole subject of tether simulation, programs for which

have been written for a decade now, is the apparent lack of any validation by comparison to

physical experiment. Although the space environment is certainly different from the Earth

based laboratory, the task of modifying simulators to include the laboratory gravity field

(constant) should not be insuperable; neither should performing quantitative experiments.

The cost would certainly be less than that of a space mission, and the opportunities for

repetition and more detailed observation greater.
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3.0 VARIABLE-G/MICRO-G LABORATORY TETHERED TO THE SPACE

STATION

Tethers offers the possibility of varying the level of the apparent acceleration on board

a laboratory by exploiting the gravity gradient. By moving the laboratory along a vertical

tether attached to a mother station (e.g., the Space Station) or by placing the laboratory at

various distances from the mother station, the laboratory will experience an apparent

acceleration level which increases with the distance from the mother station.

In low Earth orbit, with a tether length of 10 km, the static acceleration on board the

laboratory, owing to the gravity gradient, can vary between zero at the system's center of

mass (CM) and 4x 10 -3 g at the tip of the tether. The external perturbations acting on the

system at the Space Station altitude of 450 km (a value that was valid at the time of our

study) causes fluctuations of the accelerations a. The magnitudes of the acceleration was

estimated as follows: a < 10 -6 g for frequency < 10 -3 Hz; a < 10 -7 g for 10 .3 Hz <

frequency < 10 -2 Hz; and a < 10-7 g for frequency > 10 -2 Hz.

Two configurations were investigated during our study: (A) a single-tether system

whereby the Space Station is at a non-null acceleration level; and (B) a dual tethered system

whereby the gravity laboratory moves along the upper tether and the lower tether was

added to nullify the acceleration on board the Station and to provide a pollution-free

platform for the study of the Earth.

The propagation of disturbances from the Station, through the tether, to the gravity

laboratory and to the outer platform at the tether tip was also investigated. In conclusion, it

was found that a small material damping (ofa few percents) is enough to abate dramatically

the longitudinal waves at frequency above 1-2 Hz. The transverse waves, instead, are only

slightly affected by material damping because transverse waves have only a non-linear

coupling to the tether stretch.

Four papers are included in the following which summarizes the highlights of our

research on this topic as follows:

Paper 1 presents the deployment strategy for the single-tether system and the

techniques to damp the vibration modes excited during deployment.

Paper 2 deals with the acceleration noise levels on board the gravity laboratory of the

dual-tether system. The inflt, ence of external perturbations in analyzed in detail for two
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distinct cases:(a) for a laboratoryfixed on the tether;and (b) for a laboratorycrawling

along thetether. Moreover,theaccelerationnoiselevelscausedby externalperturbations

arecomparedto thoserequiredby a numberof microgravity processesproposedfor the

low-gravityenvironmentof theSpaceStation.

Paper3 focuseson the attitudedynamicsof the gravity laboratoryplacedat 1-km

distancefrom theSpaceStationandinvestigatesthenoisecomponentrelatedto theattitude

degreesof freedom.

Paper 4 investigatesthepropagationof longitudinalandtransversewavesalongthe

tether from theStationto thegravity laboratoryandto theplatformat thetethertip. The

modeltreatsthetetherasacontinuumandtakesintoaccounttheeffectof gravitygradients,

materialdamping,andtheinertiaof themassesattheendof thetetheror attachedalongthe
tether.

SeealsoQuarterlyReportsNo. 1throughNo. 15of this contract for more details.
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A Three-Mass Tethered System for
Micro-g/Variable-g Applications

Enrico C. Lorenzini"

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts

This paper describes a Space-Station-attached tethered system for micro-g/vartsbk.-g applications. The

system consists of three platforms: the Space Station, an end mass anchored at the end of a tO-kin.long kevlar

tether, and n micro-g/variableog laboratory with the capability o[ crawling along the tether. Control strategies

are devised for performing both the deployment and the sialionkeeping maneuvers of the system. Effective

algorithms are idenlified for damping out the major oscillations of the syslem.

Q

A,
E,

F,
g
kl,

l,

rrl_

r I

7",
X,Z

XB, ZB

XI,Zl

fl

P,

Nomenclature

= semimajor axis
= ith tether cross section

=ith tether Young's modulus
= force acting upon the ith mass

=gravity acceleration at the Earth's surface
= ith-tether stiffness

=distance between mass m, and mass m,_
= ith mass
= radius vector from the Earth's center to the ilh

mass
= tension in the ith tether

= orbiting axes

= body axes
= inertial axes

= orbital rate

= radius vector from the system center of mass to
the ith mass

Introduction

HE ongoing development of the Space Station programhas vitalized research in microgravity related ex-

periments. Material processing, pharmaceutical production,
and life sciences are the disciplines that will benefit the most

from an orbiting laboratory capable of providing a
microgravity acceleration level (or better) at frequency <0.1

Hz for I day to 1 month duration.l-2 The current requirements

for the microgravity laboratory on board the Space Station
specify a 10 -_ g acceleration level at all frequencies) This ac-
celeration level is marginally satisfactory for most of the envi.
sioned microgravity experiments, Furthermore, the

microgravity experiments severely restrict the scheduling of
other "noisy" activities onboard the Space Station. The

reasons above prompted us to conceive an alternative con-
figuration for the microgravity laboratory that makes use of a

tethered system attached to the Space Station. 4'_ As shown in
Fig. 1 the system consists of a 10-km-long, 2-am-diameter
kevlar tether attached to the Station at one end. Another plat-
form (e.g., a scientific platform) with a presently estimated
mass of 9.06 metric tons is attached to the other end of the

tether. The micro-g/variable-g laboratory (in short, "g-

laboratory" or "g-platform") with an estimated mass of 5
metric tons is also attached to the tether in between the two

Received June II, 1986; presented as Paper 86-1990 at the
AIAA/AAS Guidance, Navigation and Control Conference,
Williamsburg, VA, Aug. 18-20, 1986; revision received Dec. 16, 1986.
This paper is declared a work of the U.S. Government and is not sub-
jecl to copyright protection in the United States.

"Scientist. Radio and Geoastronomy Division.

end platforms. The g-laboratory is equipped with a
mechanism for "crawling" along the tether from one end to

the other. The stable configuration of the system, as
thoroughly dealt with in other papers, 6.7 is along the local ver-

tical while the tether is stretched by opposite forces resulting
from the balance of gravitational and centrifugal forces acting
upon the system. The point where the above-mentioned forces
balance out is often called "orbit center" and its distance

from the Earth's center, when the tether mass is neglected, is
given by

r=l --t-I

(I)

where r, is the length of the radius vector from the ith mass to
the Earth's center and the summation is extended to the three

masses which constitute the system. For moderately long

systems the orbit center coincides with the center of gravity
and with the center of mass (C.M.). In our case, assuming a
Space Station mass of 90.6 metric tons (as foreseen for the in-

itial phase of the Space Station program), the offset between
the center of mass and the orbit center is 1.2 m when the g-
laboratory is located at the orbit center and the Space Station

is flying at 500 km altitude. If the laboratory is displaced from
the orbit center it will experience a steady-state acceleration,

linearly dependent upon the distance from the orbit center goc,
the modulus of which is given by

A t = 3fl21o_ (2)

This acceleration is usually called gravity gradient acceleration
but actually two thirds of it originates from gravitational
forces and one third from centrifugal forces.

It follows from the description above that by placing the g-
platform at various distances from the orbit center, the g-

laboratory will experience correspondingly different accelera-
tions ranging from zero-g at the orbit center to approximately

10-2g at the tether end opposite the Station.

Once the system is deployed from the Space Station the
residual oscillations (e.g., vibrations excited during the

deployment phase) must be damped out by active and/or
passive dampers. Both the deployment maneuver and the

damping algorithms activated during the stationkeeping phase
are described in the next sections.

Mathematical Models

Two reference frames are erected (see Fig. 1). The orbiting
reference frame [x,z] rotates at constant orbital rate [2. Its
origin coincides with the system (C.M.) at time t = 0 with the z
axis along the local vertical toward the Earth's center, and the
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x axis along the local horizon on the orbital plane toward the

direction of flight.

The body reference frame [xs,zs] has its origin at the system

C.M., with the za axis parallel to the line through the end

masses (m_ and mj) of the system and pointing toward mr,

and the Xa axis on the orbital plane toward the direction of

flight.
Two different mathematical models have been derived for

the dynamics of the system based on different choices for the

integration variables. Both models describe the two-dimen-

sional dynamics (in the orbital plane) with respect to the or-

biting reference frame. The assumptions are the same for the

two models: point masses, spherical Earth, second-order ex-

pansion of the gravity potential, elastic but massless tethers.

In the first model, moreover, the orbit of the system C.M. is

assumed to be circular.

Mathematical model I makes use of the Lagrangian coor-

dinates O, /_,/:, e (see Fig. I). The kinetic energy of the system

is given by

I 3

T=_-_,:_, m, IVhl: (3)

where the inertial velocity v, can be expressed in the orbiting

reference frame as follows:

t' h =t' m +flxa+ (O-i-fl) Xpu , (4)

In Eq. (4) the subscript B identifies the body reference frame.

By developing Eq. (4) and by substituting in Eq. (3) we get:

'' [T= _- _, m, /.H,: + Z_,: + 10 -_): (.vH,: + z_,: )

I ' "+ 2 (0 - _ ) (.i,,z,_, -.v,,:._, ) + --;-,h,,,fFa _5)

where Illto t =Ill I +ltl 2 +IH 1 expresses the total mass of the

system.

V=-p,__ Ir, I (6)

The potential energy expansion, with respect to the body axes.

truncated to the second order gives

1

t'= ---_--,_ m,f12 [(3cos20-- l]Z,,: + (3sin"O- l )xa, "-

- 6 sinOcosOxa,%, 1 -- m,,,fl'-'a: (7)

Since e<l, we can express xa,, ze, in terms of l, and _ as

follows:

Zs, = R fl, + ( l - Rt )ll

Zsz = R_Iz - Rill

Za_ = (Rb - i )I: - R II I

XBI = -- R2(

xs2 = ( l - R: )_

xe_ = -R:_ (8)

where R, = m,/m,o ,,

The Lagrangian function L is readily obtained by subtract-

ing the potential energy from the kinetic energy, while the

equations of motion are given by

d__( )
dt \0¢, ,,'- a'_7, =Qq''

where the Lagrangian coordinates are

i = 1..... 4 (9)

ql = 0; qz = _.; q3 = Ii; q4 = 12 (10)

Substitution of Eqs. (8) into Eqs. (5) and (7) gives the

Lagrangian as a function of the variables It, 12, (, 0. After

lengthy derivatives we get the following equations of motion:

O"lR_ll [11 +ul +R31a[I:-ul +R2(I- R2)¢2 I

+ 2(O-fl)lRiI t II I + i_] +Rfl2 t12 - f_]

+ R2 ( I - R2 )ei I + 3fl2sinOcosOl R, I I [ll+ u ]

+ Rflz [/2 - u] - R 2 ( I - R: )_21 + 3fF (sin20

- cos"O)R?u,_ - R:._ I R tI i" - RbI_" I - R:_u = Qe/m,o ,

R: (I - R, ) [ i + g( ] - 2(O-fl)R2u

- (O+d)R:u = Q,/m,o ,

R_(I-Rt)[l_'+blt] +RtR)[l','+bl_]

- 2(O-fl)R_R2i- (O-d)RtR_e = Qq tin,o,

R_( I -R))[l_+bl:] +RtR)[I]'+blt ]

+ 2(0- fl)R,,Rd + (O"-d)R:R_,: = Qt:/m,o, (I I)

(End

Plotform)/

flight direction I

(G-Laboratory) m2l _

(Space Station) m

//

XB Vl.

Fig. I

I

12

Iocol ver ticot

/

to the

r1 o Forth's

_r _ center

Schematic of three-mass tethered system.
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where

b=fi2(1 - 3cos2O) - (O-fl) 2

d = 3fl 2sinOcosO

g=92(I -3sin20)- (O-fl)2 (12)

while u is the distance of m 2 from the system C.M. and _"is the
associated rate of change given respectively by

u= R fl: - R_I I

_i=R3t_- R,t; (13)

The generalized forces in Eqs. (I I) are given by

3

where F, are the forces acting upon the three masses. Since
e,4/,, we have that sin(e,/I,)=_,/I, and cos(_,//,)=l. The
forces F, are therefore given by:

F! = - Tt (cose + dllsinO)k

- T, (sine- _/l, cosO)i

F: = [ ( Ti - T, )cosO+ ( T t/1_ + Tz/l:)esine]k

+ [( T, - 7", )sine - ( T,/1_ + 7"2/1: )ecose]i

F3 = 7":(cosO-_/AsinO)k

+ T: (sine + _/12cosO)i (15)

where T, and 7"2 are the tensions in tethers I and 2. respec-
tively. The radius vectors r, are given by

r, = x,i + Zik

= (z_,sine + xB, cosO)i

+ (za, cose-xs,sine)k, 1-- 1,2,3 (16)

By using Eqs. (8) and by substituting Eqs. (15) and (16).into

Eq. (14) we finally get

Qo=0

Q, = -_(rt/It + 7"2/I 2)

QII = - Tt

Qrz = - 7"2 (17)

Since Eqs. (11) are of the form AYi=b(x,D the coefficient
matrix A must be inverted in order to integrate numerically the

equations of motion.
In mathematical model 2 the integration variables are the

Cartesian coordinates of the masses with respect to the above*
mentioned orbiting reference frame. The variables It, 12, 4, e
are then obtained from the Cartesian coordinates. The

assumptions for model 2 are the same as those of model i ex-
cept for the circularity of the orbit. With reference to Fig. 1,
the inertial acceleration of the /th mass with respect to the

rotating orbiting frame is given by

it, = iS, + 2fl x p, + fl x (fl + r,), i= 1.2.3 (18)

• The equations of motion in functional form are given by

mii.ii=F_,+Fr,, i= 1,2,3 (19)

where F_, is the gravity force acting upon the ith mass given by

F_, = - V V, = - V I'/2m,12fl2a:

' 2 _ "

+ 2fl-az, -- fl (x_' + Z7 ) + 3fi2Z_ ]) (20)

while Fr, is the total tension acting upon the ith mass. By
developing Eqs. (18-20) we obtain the well-known Hill's equa-
tions as follows:

J:,- 2fli, =Fr,/m ,, i= 1,2,3

z_- 3fFz, + 2f/x, = Fn/m ,, i= 1,2.3 (21)

With reference to Fig. 2 we derive the force Fr, as follows:

Fr,=IT.+ T .... ,]i+[T=,-T:.,_llk, /=1,2,3 (22)

where T_,, T:, are the components of the tension 7", in the

tether connecting the ith mass to the i+ lth mass, given by

T_, = T, cosB, = T,(x,. t -xi)/I,, i= 1,2

T:,=T, sinB,=T,(z,.,-z,)/I,, i=1.2 (23)

while T_j = T:j = O. The relations between I t , 12, O, e and the in-

tegration variables can be easily computed as follows:

,[x,-xs _
e = tan - k_J

li=[(x,÷j-x,)2+(Z,.t-Z,):! v', i=1,2 (24)

The lateral displacement E is derived by computing the coor-
dinates of the point of intersection (x c, zc) between the

straight line through m_ and m_ and its perpendicular through

m 2. The result is as follows:

where

¢ = l(x2 -xc) 2+ (Z2 -zc)2]'sign(x2-xc) (25)

x_ = [x, - x2tan2O + (zz - Z, )tanOl/( 1 - tan:e)

z_ = [x: - x2 ItanO- z2 (26)

In both models 1 and 2 the tension in each tether is computed
from the tether stretch. A longitudinal oscillation damper
(along the tether) with stiffness k_ and damping b, has been
added to each tether segment. In Fig. 2. I. is the commanded
length of the/th tether that can follow a prescribed control law
if the associated tether is actually controlled by a reel system
or if not, it is the natural tether length, la, is the length of the
associated longitudinal damper and I. the /th tether stretch.

Tether tensions and stretches of the longitudinal dampers for
the three-mass system are therefore as follows:

Ti=k.l,= EIA' (li-I_i-lr,), i=1,2

I'_, k, 1 k, I
= _ ,--_, a,, i= 1.2 (27)b_

Both models I and 2 have been numerically integrated by us-
ing a fourth-order Runge-Kutta integrator with variabie step
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size. Results for test cases with circular orbit of the system
C.M. have been identical, demonstrating the reliability of the
models.

Model l is suitable for analytical simplifications which pro-

vide direct insights into the dynamics of the system. Model 2

does not have this feature but can be more efficiently in-
tegrated than model l (especially with more than three masses)

because it does not require any matrix inversion. The equa-
tions of motion of model 2 are summarized below:

J.:l = 2fizZ1+ TI (xz -xl )/(ml/b )

,fz = 2flz_z + _ (x_ -x: )l(m,.l: )

+ T I(x I -x,)/(rn:ll)

2_ = 2fLf._ + T, (x: -x 3)�(raft:)

z't = 3t3:zl - 29,f_ + T_ (z: - zl )/(m_ II )

z.2 = 3fiZz: - 2t22, + 7"2( z_ - z, ) / ( m:A )

+ Ti (zt - z, )/(rn../I )

.z_ = 3fFz_ - 2[2X_ + 7", (z: - z_ )/ (m_l,. ) (28)

where, for equal cross sections and Young's moduli of the two
tethers, we have

Ti = EAI, III, i

7", = EAla/I,z

1,, = I_ - lat -/,.,

It: =/: - I_ -/,.,

Im = k,i la/bl - kl lal/bh

I',r:.= k,,.ll,./ b,. - k,.I,r./ b2 (29)

Equations (28) and (29) together with Eqs. (24-26) describe

the two-dimensional dynamics of the three-mass tethered

system.

Damping Algorithms

Before dealing with the deployment maneuvers of the three-
mass system we must conceive effective algorithms for damp-

ing out the oscillations associated with the various degrees of
freedom of the system; namely, the libration 0, the lateral

oscillation e, and the longitudinal oscillations :,,/,.

Ltbralion/Lmteral Dampers

From Eq. (11) we can infer that the libration of the system,
when the g-laboratory m 2 is placed at the system C.M.

(rnll I =m3/2). is described in first approximation, for small
oscillations, by the following simplified equation

#'/_ - 2 (0- fl)ll+ 3fl2120 = 0 (30)

where I=1_ +lz. We assume, moreover, that the tether is
unstretchable; hence I = I_.

In Eq. (30) the second is the dissipative term. The energy
dissipated for each libration cycle is therefore given by

Ea=2f_ IliS-fl)Sdt

where r = 2x/(v_fl) is the period of the libration and I0 is the
tether length for 0= 0. Our goal is to implement a tether con-

trol law (for the two tethers) that maximizes E a. Let us adopt
the following control law:

l# =/o(I -KeO) (32)

with the gain K e greater than zero. The length control law ex-

pressed by Eq. (32) can be readily transformed into a rate con-

trol law. Here we adopt the length control formulation
because it gives a more immediate insight into the dynamics of
the system, as explained later.

Since d0Z/dt=200 " and, for small values of O, /=/o, by
multiplying Eq. (30) by 8 and integrating from 0 to r we obtain

""
For light damping the approximate solution of Eq. (30), over
one cycle, is as follows:

0 = Osin ( q3ft t ) (34)

where/_ is the libration amplitude and v'3O the frequency. By

substituting Eq. (34), its derivative, and Eq. (32) into equation

(33), and after computing the integrals [the third integral in
Eq. (33) is equal zerol we finally get

0 ,/30 /0
(35)

where 61= 21oke8 is the peak-to-peak tether length variation as
derived from Eq. (32), while A_ is the decrease of libration

amplitude per libration cycle. In the case of light damping Eq.
(35) expresses the logarithmic decrement of the libration

angle. The most important and unique feature of the control

law (S-type) expressed in Eq. (35) is that the logarithmic decre-
ment increases inversely with the libration amplitude 0. The

trajectory followed by the end masses is readily obtained by
substituting Eq. (34) into Eq. (32) and solving for the x and z

components. It is interesting to note that the trajectory fol-

/

(3,) ,.,...,,,o,,o.,,..d,..,,..,.,,.



246 E.C. LORENZINI J. GUIDANCE

lowed by the end masses in a damping cycle is not an eight-
shaped yo-yo cycle 6p but an S-shaped cycle. In other words,

the tether is shortened during the retrograde part of the libra-
tion and is lengthened during the prograde part as shown in
Fig. 3. The control law expressed by Eq. (32) can be adapted

to a three-mass system by modifying and generalizing Eq. (32)
as follows:

let =101[l - (KeO-K,e/I) )]

Ic2 =/02[I- (KoO + K, _/12 ) ] (36)

Both 0 and ¢ are fed back into the tether reel control. Because

of the last terms in Eq. (36) the mass m 2 is moved along the
wire in such a way as to produce Coriolis forces which are op-

posed to the lateral displacement _ in order to detract energy
from the oscillation associated to that degree of freedom. A

simplified version of Eq. (36) can be obtained by assuming
K, =Ks, consequently we obtain (see Fig. 3)

]_, =/ol[i - K,(O-_/I t )]=/ol ( l - KeO I )

1c2= 102[l - Ke (O+_/I,.)] = 10: ( 1 - KsO _ ) (37)

In order to maximize the energy transfer between the
longitudinal vibrations of the tethers and of the respective
longitudinal dampers, the natural frequency of each damper

must be equal to the natural frequency of the associated

tether. Since the longitudinal oscillation frequency changes
with tether length the passive dampers perform best for a

specific tether length only. An adaptive system could be im-

plemented instead but it has not been included in the present
analysis. In the present design each passive damper is tuned to
the frequency of the associated 2-mm-diam kevlar tether at

the natural tether length during stationkeeping: Is, t and Isk2,
respectively. The damping coefficient _ has been set at 0.9 for

both dampers. From numerical simulations _ = 0.9 has proved
to maximize the damping of the longitudinal vibrations in the
two tether segments. Since mass m: is placed at the system

C.M., Isk tm t = ls,2m3 and the angular frequency of tether 1 is
equal to the angular frequency of tether 2, as indicated by

(_tl = (.Ol2= [EA/(l_k,ml) '/' =2.74× 10-2rad/s

=4.4×10 -3HZ (38)

This simplified version, where Ot and 0: are fed back into the
reel control system, is the one adopted in the following simula-

tions. The value of the gain K s has been determined by impos-
ing a maximum tether length variation, during a libration
damping cycle, of ! 070of the fully deployed tether length per
degree of libration 0. The lateral oscillation ( actually gives a
smaller contribution than the libration 0. The resulting value

for the gain is K s = 0.55.

Longitudinal Dampers

Two passive dampers (spring-dashpot), mounted in series to
their respective tethers, have been added to the system for
damping the longitudinal tether oscillations. The passive solu-
tion has been chosen in order to simplify the design of the

three-mass system. According to our design philosophy the
reel system (unavoidably massive) controls the low frequency

oscillations (librational and lateral) of the system while the
passive dampers damp the higher frequency, longitudinal
oscillations.

where EA = 61645 N for a 2-mm-diam kevlar tether./,A_ = 909
m, and m t =90.6 metric tons. Consequently the gains of the
longitudinal dampers in Eq. (29) are as follows:

k I =EA/I_k j =67.81 N/m

k z = EA/I,, z = 6.781 N/m

bl = 2_wi, m l = 4460.24 N/(m/s)

b2 = 2_,_r2m2 = 446.024 N/(m/s) (39)

where Iskl/I,k 2 = m3/m t = 1/10. Equation (38) also indicates

that the tethers provide a very effective isolation of the g-
laboratory from any oscillation of the Space Station or the end
platform with a frequency greater than 0.1 Hz.

STEP B STEP A

m 3

m 2

/

\

O1: 0 + (/21
0 z : 0 - (//'2

ml

FiK. 3 Pictorial rcprescnlmlion of syslem's dynamics daring IJ libra-

lion cycle with librational/latenll dampers swilched on.

Deployment Strategy

Deployment of the system is obtained by unwinding the two
tethers from two reel systems that control independently tether
1 and tether 2. Equation (30) referes to a two-mass system but

it also describes approximately the dynamic of a three-mass

system as long as mass m 2 is located at the system C.M. From
Eq. (30) we infer that in order to have a deployment with con-

stant # (deployment along a straight line) the reeled out tether
length must be an exponential function of lime. 6 Generalizing

this to a three-mass system, each tether length must increase
exponentially with time and It/I 2 = I,tt/l_t 2 (fully deployed
tether lengths) in order to maintain the mass m 2 at the C.M.

The exponentially increasing phase (acceleration phase) is
followed by an exponential deceleration phase and subse-
quently by a transition phase to stationkeeping conditions. All

the transitions between sequential phases are simultaneous for
the two tethers. In the following formulas In is the initial
tether length of tether 1, IE] is the tether length at the begin-

ning of the deceleration phase, In is the length at the begin-
ning of the transition phase (as later explained),/.n is the final
length, and I,, is the controlled tether length. In formulas the
first two phases are summarized as follows:

Phase 1 (acceleration) It, <1_, <IEI

I_i=/. e_'

I_2= ,'he_' (40)
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Phase II (deceleration) le_ <_ lc] < I n

It, = (t_ - ln )e -_' + In

lcz= (in -/j_ )e -e' + l_ (41)

where 13= (_/(In/I n - 1) and (_= _,4flsin(20c). In Eqs. O9), 0_

is the constant value of 0 during the acceleration phase•

The final tether lengths /f_ and/f_ are the tether lengths at

which the tether speed would be reduced to zero if the

deceleration phase were continued indefinitely. In order to

speed up the deceleration phase,//a > I_,l and/r. > lxk 2.

The transition control law is activated when the actual speed

of tether I during the deceleration phase equals the tether

speed imposed by the stationkeeping control lay, with a libra-

lion angular rate Or at the time of transition between the two

phases, as set forth in the formula

- _'(/_1-//I) = Glk,,Or (42)

and similarly for tether 2. However, tether speed continuity

does not imply tether length continuity. The mismatch is cor-

rected by the transition control law and by a choice of control

parameters that minimizes such mismatch. The transition con-

trol law is a semicycle of a cosinusoidal function of duration

AT activated at the transition time. in formulas

Phase Ill (transition) Ir_ <lc_

I_l = Is, 1 ( i - f r - keO)

fr =for cos (43)
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where for = AI/I,_t is the tether length mismatch at transition

divided by the stationkeeping tether length. Similar formulas

apply to tether 2.

This deployment strategy is similar to the one formulated by

Misra and Modi.* Unlike the deployment strategy of that

paper, the measurement of the libration angle 0 is not required

during the acceleration phase of our deployment maneuver.

Consequently radar tracking is not necessary at short distances

where the radar is blind. Secondly, the librational damper is

activated before the end of deployment and remains active

during the following stationkeeping phase when damping of

librations is also necessary. In the above-mentioned reference,

on the contrary, the damping of librations is proportional to

the deployment speed and it tends to zero at the end of the

deployment maneuver.

Numerical Simulalion
Stltlonkeeping Phase

The effectiveness of the dampers during stationkeeping is

shown in the following set of plots. These plots have been ob-

tained by simulating the dynamic response of the constellation

for 14,000 s during the stationkeeping phase under the follow-

ing initial conditions: the initial tether lengths are 1_ = 909 m

and In = 9090 m, the initial libration angle is 0_ = 1 deg, and

the initial lateral deflection of mass m: is _t = 0. I0 m. Figures

4a and 4b show the tether length and the longitudinal damper
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length, respectively, for tether l. The same quantities for
tether 2 have a similar time dependence but are scaled up a fac-
tor of 10. Figures 4c and 4d show the libration angle 0 and the
lateral deflection c, respectively. Finally, Figs. 4e and 4f show
the horizontal and vertical acceleration components measured
on board the g-laboratory. Initial transients are effectively
abated and, at the end of the simulation, the acceleration level

at the g-laboratory (in the absence of external forcing terms) is
well below 10 -s g.

Deployment Phase

The parameters for the deployment maneuver adopted in
this study have been obtained by trial and error after several

deployment simulation runs. The following set of parameters
provides a stable, fast maneuver and minimizes the mismatch

at the transition between the deployment and stationkeeping

phases. The parameters are as follows:

IEI = 500 m

/,1 =Is, I +0=909+ 100= 1009 m

0c = 30 deg

AT= 2000 s (44)

In the deployment maneuver simulation shown here the initial
tether lengths are Ill = 20 m, In = 200 m. Although these values
are greater than in actuality, they allow a deployment without

tether slackenings. The system shows a tendency to go tem-

porarily slack at the very beginning of the deployment
maneuver because of small errors in the initial conditions. An

in-line thruster, as also proposed by Banerjee and Kane 9 and

adaptive longitudinal dampers can help considerably in reliev-
ing the slack tether problem but were not included in this

study. An initial librarian angle 0t = 30 deg and an alignment
error of the three masses _t = 0.05 m complete the set of initial

conditions. The dynamic response, however, is fairly insen-

sitive to these parameters. Figures 5a and 5b show the tether
length and tether speed respectively of tether 1 vs time. The

corresponding quantities for tether 2 are like those of tether 1
scaled up by a factor of 10 (they are not shown here for

brevity's sake). The deployment is completed in approxi-
mately 3 h. This value, however, is affected by the initial

tether length and is therefore ultimately affected by the posi-
tion of the reeling system on the Space Station with respect to
the Station C.M. More important are the initial tether speeds

which must be as close as possible to the initial design speeds,

according to the law Ii, = cd_,, in order to avoid slackening of
the tethers, in Fig. 5b the different phases of the deployment
control law are evident: the activation of the rotational

damper results in the ripple at approximately 5500 s, while the

disactivation results in the second ripple at 7500 s. The time
history of the librarian angle 0 is plotted in Fig. 5c, where the 0

angle is constantly equal to Oc, as expected, during the deploy-
ment acceleration phase. Figure 5d shows the side view of the

trajectory of mass i (Space Station) with respect to the system
center of mass. Mass 3 (the end platform) follows a mirroriike

trajectory scaled up by a factor of 10. Mass 2 (the g-

laboratory) remains very close to the system C.M. throughout

the deployment maneuver. Figure 5e is the lateral displace-
ment _ of mass 2 vs time. When the librational/lateral damper

is switched on at 5500 s this oscillation begins to be damped
out. The damping of _ is less effective than that of the angle O

because the librational/lateral damper is tuned to the libra-
tional frequency. By using a multifrequency damping tech-

nique, as formulated in Eqs. (36), the damping of the lateral

oscillation can be further improved. Figure 5f shows the time
history of the tension in tether I which is very close to that of

tether 2 throughout the entire deployment maneuver.

Conclusions

The proposed tethered system is an advisable alternative to

the presently contemplated micro-g laboratory installed near

the Space Station C.M. The low frequencies of the long tethers

and associated dampers provide a good isolation from Space
Station and/or end platform oscillations at a frequency higher
than 0.1 Hz (it is possible to improve even further on this
score). The tether system has the additional capability of con-

trolling the position of the g-laboratory along the tether in
order to nullify the gravity gradient or to vary it according to a

prescribed profile. The proposed deployment strategy allows
the system to reach its final configuration in approximately 3
h, The initial part of deployment, however, requries a more

detailed analysis. The active and passive dampers added to the
system provide an effective abatement of the longitudinal,

librational, and lateral oscillations, as demonstrated by the

simulations of the deployment and stationkeeping phase. A
thorough analysis of the perturbations acting upon the system
is yet required. It will be a topic of investigation in our future
studies.
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This paper investigates the dynamics and acceleration levels of a new tethered system for micro- and

variable-gravity applications. The system consists of two platforms tethered on opposite sides to the Space Station.
A fourth platform, the elevator, is placed in between the Space Station and the upper platform. Variahle-g levels
on board the elevator are obtained by moving this facility along the upper tether, while microgrsvity experiments
are carried out on board the Space Station. By controlling the length of the lower tether the position of the system
censer of mass can be maintained on board the Space Station despite variations of the system's distribution of mass.
The paper illustrates the mathematical model, the environmental perturbations and the control techniques which
have been adopted for the simulation and control of the system dynamics. Two sets of results from two different
simulation runs are shown. The first set shows the system dynamics and the acceleration spectra on board the Space
Station and the elevator during station-keeping. The second set of results demonstrates the capability of the
elevator to attain a preselected g-level.

Introduction

URRENT studies of microgravity experiments onboard
the Space Station point out several requirements of such

experiments that cannot be met by the microgravity labora-
tory presently designed for the Space Station. A variety of

experiments, encompassing among others life sciences, mate-
rial processes, and pharmaceutical research, have been pro-
posed for the Space Station's microgravity laboratory. The
threshold levels of acceleration noise for such experiments
range from 10 -2 to 10 -s g. A facility capable of exploring all
or part of the range specified above would greatly enhance the
capability of the Space Station in the area of microgravity. On

the other hand such a system should not alter the acceleration
level onboard the Space Station above the present require-
ment of 10 -5 g (at all frequencies) in order to not interfere

with the experiments to be carried out on the station.
The system that we propose consists of two end platforms

(See Fig. 1), tethered to opposite sides of the Space Station.
The upper and lower tethers have a diameter of 2 mm and a
length of approximately 10 km. Since the upper and lower

platforms are in a pollution-free environment (far from the
station), they can be used for observation of the sky and the

Earth respectively. The controlled gravity laboratory is lo-

Gated onboard a "space elevator" that can crawl along the
upper tether between the Space Station and the upper plat-

form. Microgravity experiments are carried out onboard a
stationary laboratory (SML) that is attached to the transverse

boom of the station. In order to minimize the gravity gradient
acceleration onboard this laboratory, the center of mass (CM)

of the system must be as close as possible to the stationary
mierogravity laboratory. _ Consequently, the steady-state ac-
celeration level onboard the elevator ranges from 1.5 × 10 -s

tO 4 × 10-3g as the elevator moves from the upper boom of
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the station to the tether tip, while the length of the lower

tether is controlled in order to maintain the system CM at the
SML.

This system has been called TECS, which stands for Tether

Elevator/Crawler System.

The capability provided by the elevator will allow scientists
to solve such major unresolved issues of microgravity science
as experimental measurement of threshold values, the influ-

ence of g-jitters and hysteresis problems. Since TECS can
maintain the system CM at the appropriate location by con-
trolling the tether lengths, the elevator can maneuver along
the tether without interfering with the microgravity experi-
ments carried out on the station.

Description of the System

The system is formed by the Space Station with a mass of
306 metric tons and a frontal area of 2.7 × 103 m:, by the
elevator with a mass of 5 metric tons and a frontal area of

l0 m 2, and by two end-platforms m_ and m, with a mass of
10 metric tons and a frontal area of 10 m 2 each. The platforms
are connected by 2-mm-diam Kevlar tethers with the thermal
and mechanical characteristics listed in Table I.

The distance between the SS and the upper platform is

10 km. The length of the lower tether is adjusted from 10 km
to ! 5 km as a function of the position of EL along the upper
tether in order to control the position of the system CM.

Several microgravity processes t-3 require minimum acceler-
ation levels ranging from 10 -2 to 10-st at low frequencies.
According to Refs. I and 2, the threshold levels of the
acceleration for most of the proposed microgravity experi-
ments exhibit a linear dependence upon the frequency for
frequencies between 10 -_ and 1 Hz; and a quadratic depen-
dence above 1 Hz (see Fig. 2 derived from Ref. i). As shown
in Fig. 2, mierogravity processes are mostly sensitive to
disturbances with frequency smaller than 10 -3 Hz. Conse-
quently, external perturbations with a frequency content com-

parable to the orbital frequency, such as acceleration terms

generated by aerodynamic forces and 3"2 gravity components,
strongly affect the microgravity experiments.

On the other hand, the noise arising from among others,
structural vibrations, crew motion, vernier thrusters for atti-
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tude control and spacecraft dockings, usually called g-jitters,

have frequencies greater than 10 -3 Hz, and are less of a

problem according to Fig. 2.
In addition, longitudinal vibrations of the tethers are ex-

cited by thermal shocks, which take place at the crossing of
the terminator. Given the actual mechanical characteristics

and lengths of the tethers of our system, these oscillations,
also called thermal g-jitters, have a frequency range from

10 -3 to 10 -2 Hz. According to Fig. 2, those are of intermedi-

ate importance to the microgravity experiments.
In the next sections we will address the impact of TECS on

the acceleration level onboard the Space Station. We will also

Table 1 Characteristics of Kevlar tether

Young's modulus 1.96 x I0 _° N/m-"
Absorptivity, a 0.75
Emissivity, e 0.5
Specific heat 2500 J/Kg-K
Linear density 4.85 x 10- 3 Kg/m
Coefficient of thermal expansion -2 × 10-* K-

M 4

UPPER PLATFORM

Fig. 1
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I
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M2SPACE STATION

M I
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Schematic of tether elevator/crawler system.
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evaluate the acceleration fluctuations, onboard the elevator,

caused by environmental perturbations with respect to scien-

tific requirements.

Mathematical Model

Equations of Motion

The motion of this tethered system is described with respect
to an orbiting reference frame (ORF) that rotates at constant
orbital rate fl and radius Ro. The origin of this frame coin-

cides with the initial position of the system CM (see Fig. 3).

The x axis is along the ORF velocity vector, the - axis is along
the local vertical toward the Earth, and the y axis completes
the right-handed reference frame.

An Earth-centered inertial reference frame (IRF) is also

erected. The X axis points toward the vernal equinox, the Z

axis points toward the North Pole and the Y axis completes
the right-handed reference frame.

The three-dimensional mathematical model, adopted for
our analysis, has been developed according to the following

assumptions: lumped masses, elastic tethers and generic orbit
of the system. "5

If we denote r, as the position vector of the ith mass m, with

respect to ORF, F_.,, Fa., and FT., as the gravity, drag, and
tensional forces acting respectively upon the ith mass, the

equations of motion of the N masses of the system in vectorial
form are

i;, = -Ro- _ x ¢, -.q x (_x r,)

+(I/m,)(F_.,+Fa.,+FT.,), i=1 ..... N (I)

where the prime denotes derivation with respect to time.
Equations (1) are a set of N vectorial equations or corre-

spondingly a set of 3 x N scalar equations that have to be

integrated numerically in order to obtain the motion of the

system.

Environmental Models

Because of the very low acceleration levels in which we are
interested, an accurate model of external forces is necessary in

order to simulate with high enough fidelity the effects of the

environment on the system dynamics. The external perturba-
tions considered in the present analysis are the gravitational

forces F_, the aerodynamic forces F_ and the thermal effects
on the tensional forces F r.

Unlike other tether simulation models, 6"7 our gravity model
is not linearized and takes into account the second zonal

harmonic of the gravity field (,/2 term). The J: term has a

secular effect on such orbital parameters of the system as

mean anomaly, argument of perigee, and right ascension of

the ascending node. The J, term also affects the librations and
lateral oscillations (see next section) of a long multimass

tethered system such as the one under analysis.
The drag model is an analytical fit of Jacchia's 1977 density

model, s'9 The atmospheric density varies as a function of the
altitude (the Earth's oblateness is also considered) and the

local exospheric temperature. The latter takes into account
the diurnal variation, which is a function of local solar time,

latitude, and solar activity.

The thermal inputs on the tether segments are the solar
illumination, the Earth's albedo, and the infrared Earth radia-

tion. The only cooling process is the emitted radiation. The

position of the terminator is computed as a function of the
Sun's position along the ecliptic. As the system crosses the

terminator, the tether temperature varies abruptly; conse-
quently, the tether segments expand or contract and the

tethers" tensions exhibit steep variations. The N - 1 equations
of the thermal balance of the tether segments are added to
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Eqs. (I). The thermal equation of the jth tether segment is
given by

1", = 2r, ail ....... + al'U%t, r,f/ cosy, + 2nr, a_,£T_ - 2nr, ae, T_,

j=l ..... N-I

where

:,c:r_

(2)

a = Earth albedo (annual average)
c, = specific heat ofjth tether

I, = view factor ofjth tether
I'"" = solar flux

/ ....... = solar flux incident on tether

/,u, and I ....... are equal to zero during the eclipses
r

7-,
T_
7l/

"/i

fY

P,

= radius ofjth tether

= temperature ofjth tether
= Earth temperature

= absorbitivity ofjth tether
= infrared absorbitivity ofjth tether

--emissivity ofjth tether
= sun zenith angle ofjth tether
= Stefan-Boltzmann constant

= volume density ofjth tether

System Dynamics

Degrees of Freedom

The coordinates x,, y,, :, of the point masses with respect to

the ORF are numerically integrated by the computer code
with a fourth-order Runge-Kutta or a predictor-corrector
integration routine.

A second set of coordinates has also been selected in order

to provide a more direct description of the system dynamics.

This set of coordinates is formed by (see Fig. 3): the in-plane
(in the orbital plane) 0 and out-of-plane (orthogonal to the
orbital plane) _0 angles of libration between the line connect-

ing the end-masses and the local vertical through the system
CM; the N -- I lengths of tether segments /+, where N is the

number of the lumped masses and the N- 2 lateral deflec-

tions _, of the inner masses with respect to the line through the
end-masses. The coordinates _, are further projected onto the

in-plane _ and out-of-plane components to+.
This set of parameters identifies such characteristic oscilla-

tions of the system as the low frequency f librations
(f= 10-4Hz), the medium frequency lateral oscillations

(f= 10 -3 Hz), and the higher frequency longitudinal oscilla-
tions (10 -3 Hz <f< 10 -2 Hz).

Accelerations

The acceleration measured by an accelerometer package
onboard any platform of the system is the sum of the external,

excluding the gravitational, and internal forces (e.g., tensions)
acting upon a platform divided by the mass of that platform.
Since the platforms librate approximately like the overall

tethered system, an accelerometer package onboard a plat-
form (e.g., the elevator) does not measure the orthogonal

components of the acceleration caused by the librations (as an

accelerometer package on a pendulum measures zero along
the axes orthogonal to the pendulum).

First we erect the orbiting reference frame XCM)'CMCCM

(CMRF) that is like the previously defined ORF except for
the origin of CMRF which coincides with the instantaneous

CM of the system. Since the attitude dynamics of the individ-

ual platforms are not modeled in the present code. the best

approximation to a body reference frame is the system-body
reference frame (SBRF). This frame of coordinates is rotated

b_ thc two angles I) and _o with respect to the CMRF ( see Fig.
31. The accelerations measured onboard the Space Station and

the space elevator are projected onto the SBRF v.hosc compo-

m

XBS

Xcm_"--,..

'\

\

_3

m 3

J,

YBS

Z jcm,,

¢_

'' "ALVA

' TO EARTH

Fig, 3 Reference frames.

nents are the most meaningful for the experimenter. The
acceleration components of the SBRF are as follows: the front

component along the Xs8 axis, the side component along the
Ysa axis, and the longitudinal component along the :ss axis.

Dsmping of Oscillatlml

The system has several oscillations, associated with some of

its degrees of freedom, that can affect the "quality" of the
accelerations measured on board the Space Station and the
space elevator.

As pointed out in previous papers, _°._ the tethers introduce

a "noise" at the longitudinal vibration frequencies that may
impair the performance of the system. Lateral deflections and

longitudinal oscillations also have a nonnegligible effect on
the accelerations on board the elevator.

At the orbital inclination of 28.5 deg the in-plane perturba-

tions are much stronger than the out-of-plane perturbations.
in-plane oscillations, furthermore, are excited by Coriolis

forces during transient maneuvers of the system (e.g., deploy-
ment and crawling maneuvers), while out-of-plane oscillations
are not. Luckily the in-plane oscillations are much easier to

damp out by means of tether control than the out-of-plane
oscillations.

This section explains briefly the strategy that we adopt for

damping the in-plane oscillations by controlling the lengths of
the tethers. A more thorough treatment of this rather complex
topic, which is beyond the scope of this paper, will be

presented in a future paper.

Damping of longitudinal tether vibrations is provided by
passive (spnng-dashpot systems in series with each tether

segment) or active (reel control) dampers. The latter is the

most likely mechanization of the longitudinal dampers be-
cause a passive damper would be required to stretch tenths of
meters, in the active case, the ith reel controls the tension of

the associated tether segment with a proportional-derivative
control law. The ith control law is tuned to the frequency of

the longitudinal oscillations of the ith tether segment. The
derivative term is such as to provide a damping ratio of 90%

of the critical value which provides an effective damping of

the longitudinal (spring-mass mode) oscillations.
The in-plane libration and the in-plane lateral oscillations

are damped out by exploiting the Coriolis forces. The reels
control the tether lengths with terms proportional to the

librauon angle 0 and the in-plane components of the lateral

deflections _:/, in such a way as to extract energy from the
above mentioned oscillauons. In-plane Conolis forces ha_e a
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strong coupling with the displacements of the platforms in the
orbital plane. An effective damping of the libration and of the

lateral oscillations can be obtained by controlling the tether

lengths in opposition to the oscillations to be damped out.
As a conclusion to this section we wish to point out that the

longitudinal dampers must be activated throughout the mis-

sion in order to damp out the oscillations arising from the

thermal shocks. The in-plane dampers, on the contrary, are
only necessary during transient phases (e.g., deployment and

crawling maneuvers). The in-plane dampers, however, can be

conservatively activated during steady-state phases (e.g., sta-

tion-keeping) in order to improve (slightly) the performance
during such phases. Out-of-plane dampers are not necessary
under normal conditions. Active thrusters could be used

sporadically under emergency conditions.

Elevator's Control

The most peculiar feature of TECS is the capability of the

elevator to crawl along the upper tether in order to produce

an assigned g profile vs time onboard the elevator. One of
these maneuvers consists of moving the elevator from its

initial location, and consequently initial g level, to a final
position with a different g level. This maneuver is usually

called g tuning and it is designed for exploring acceleration

thresholds of microgravity experiments.
A control law, suitable for this maneuver, must meet the

following requirements: 1) acceleration and deceleration

phases as smooth as possible. 2) small perturbations of the

system dynamics, and 3) capability of maintaining the acceler-
ation level onboard the Space Station below 10-5 g.

Toward this end we derived a modified hyperbolic tangent
control law z_ (MHT) with the addition of a constant velocity
phase) -_ The constant velocity phase starts at the end of the

acceleration phase when the maximum velocity is reached,
and the acceleration is equal to zero. The hyperbolic tangent

is resumed at the end of the constant velocity phase to

decelerate the elevator. Since the hyperbolic tangent is asymp-
totic, a cut-off distance a from the target point on the tether

has been adopted in order to limit the total travel time. In
terms of the vanation of the traveled tether length Al, vs time,

the control law for the elevator's motion can be expressed as
follows:

Acceleration

t<l A

Af_ = A:'c[tanh(at)] _' (3a)

Constant Velocity

t,_ < t < t B

I -- 1,4
At', = A/_[tanh(aG)l_ + AI',7 --

t a -- t._

Deceleration

(3b)

la<t<-I *

Ad: = A:$ {tanh-,[t - (t n - t,0] }_ + Adi-'

where

(3c)

Ad_. = tether length traveled during acceleration plus tether

length traveled during deceleration

Ad_ = tether length traveled during the constant-velocity

phase

l_ = time at which the maximum velocity is reached
/ B = time at the end of the constant-velocity phase
t, = time at the cut-off distance e from the target point

x = rate parameter
;' = shape parameter

The ratio of the tether length traveled during acceleration plus

deceleration to the total length traveled is the dimensionless
parameter X. Calling the total length traveled A/'_r, we have

_r = M; + At; (4a)

,_c = xA_-T (4b)

At; (1 -- X)At_ r (4c)

By using the three control parameters :t, ),, and X, the total
travel time, the maximum crawling velocity, and the accelera-
tion profile vs time can be conveniently adjusted to meet the
first two requirements. The transition between two sequential
segments of the control law is smooth since the acceleration
has no discontinuity (specifically the acceleration is equal to
zero at transition). Consequently, the elevator crawls along
the tether according to three sequential and smoothly contin-
uous phases.

In order to meet the third requirement, the lower reel

controls the lower tether according to Eq. (3), where the
length variations Ate, and A:7 have been scaled down by the

factor m3/m _. Because of this compensatory control, the sys-

tem CM is maintained very close to its initial position during
the elevator's maneuver.

Since a long Kevlar tether is highly deformable, the total

traveled length A(cr must be corrected for the elastic deforma-
tion of the tether if the desired final distance between the

Space Station and the elevator is to be attained with good

accuracy. This corrective term is easily computed before
starting the maneuver.

As a result of a parametric analysis of the MHT control

law, we found that for a typical long-distance-maneuver (e.g.,
A_',T = 4 km) an appropriate choice of the control parameter
is r, = l0 -3 s -t, ? =4, and X =0.2. The cut-off distance a was

assumed equal to I m. The results of a simulation run, in

which the elevator maneuvers according to Eqs. (3) and the
previously selected control parameters, is shown later on in
this paper.

Numerical Results

Station-Keeping

The first set of numerical results are relevant to a station-

keeping simulation run. The system is initially at rest and
aligned with LV. The elevator is at I krn from the Space

Station and the lower tether is 10.5 km long. The sun is at the
summer solstice and the initial tether temperature is 290 K for
all tether segments. All the environmental perturbations mod-

eled in our code are acting upon the system. The longitudinal
and in-plane lateral/librational dampers are activated during
the entire simulation run. The duration of the simulation run

is 20 orbits in order to show the very long frequency beating

phenomena. The Space Shuttle orbits at an initial altitude of
450 km and an inclination of 28.5 deg. The orbital period is

equal to 5615 s.

The acceleration components measured onboard the Space
Station and the relative spectra are depicted in the following

figures: the front component and its spectrum in Figs. 4a and

4d; the side component and its spectrum in Figs. 4b and 4e;
the longitudinal component and its spectrum in Figs. 4c and

41". None of the spectra of this section show the dc compo-
nents that have been removed from the acceleration compo-

nents before computing the fast Fourier transforms.
The amplitudes of the front and side accelerations are of

the order of 10-Sg. The amplitudes are influenced by the
librations and their coupling with the lateral oscillations. In

particular, the side component shows a beating phenomenon

between the out-of-plane libration and the out-of-plane lateral
oscillations. The spectrum of the front acceleration compo-

nent (Fig. 4<1) shows a main hat-momc at the orbital frequenc_
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(f= 1.8 x 10-4nz) and a smaller harmonic at twice the
orbital frequency, both caused by the J: gravity term and the

drag. in particular the Space Station accounts for the major

contribution to the drag. The spectrum of the lateral accelera-
tion component (Fig. 4e) shows two harmonics at the same

frequencies as the previous case but with inverted amplitudes,

The longitudinal acceleration exhibits a dc component of

3.6 × ]0-Tg arising from the offset between the system CM
and the orbital center (the zero acceleration point of the

system). This dc component can be eliminated by adjusting
the length of the lower tether in order to place the orbital

center at the SML onboard the Space Station where the
acceleration is measured. In this simulation run, however, we
have decided to show the effect of the above-mentioned offset

upon the acceleration level onboard the SML. The longitudi-

nal acceleration component exhibits relatively strong thermal
jitters, which are caused by the crossing of the terminator and

are subsequently abated by the in-line dampers (Fig, 44:), The

spectrum of the longitudinal acceleration component in Fig.
4f shows frequencies, higher than the orbital frequency, of
approximately 3 x 10 -_ Hz, which are typical of longitudinal

oscillations (excited by thermal shocks).

VETRELLA, AND MOCCIA J. GUIDANCE

This analysis demonstrates, within the assumptions of our

model, that TECS provides a negligible contribution to the

acceleration noise onboard the Space Station.
The acceleration components measured onboard the eleva-

tor and the relative spectra are depicted in the following set of

figures: the front component and its spectrum in Figs. 5a and

5d: the side component and its spectrum in Figs. 5b and 5e;

and the longitudinal component and its spectrum in Figs. 5c
and 5f. The front and side components show harmonics at the

orbital frequency and at twice the orbital frequency that are
caused by the J2 term and by the drag. The drag also accounts

for the dc component of the front acceleration. The higher
frequency harmonics in the spectra are generated by thermal

shocks. The orders of magnitude of the fluctuations of the
front and side components are 10 -_ and 10 -_ g, respectively.

The longitudinal acceleration component is shown in Fig.

5c. The longitudinal acceleration has adc component of
-3.86 × 10-4g, which is provided by the gravity gradient

caused by the offset between the EL and the orbital center.

The harmonic at the orbital frequency (see Fig. 5f), with an
amplitude of the order of 10-6g, is caused by the J: gravity

term. The J2 component forces the system to librate, hence
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stretching the tethers with the libration frequency. The tether
tensions produced by this mechanism balance out at the
system CM. Since the elevator is offset from the CM. the

J:-induced tether tensions apply a differential force to the ele-

vator, which accounts for the spectral line at the orbital fre-

quency. The higher-frequency harmonics of the longitudinal
acceleration component are centered around the longitudinal

natural frequency of the upper tether system. These higher-
frequency components are generated by thermal shocks.

CrawlingManeuvers

We show in this section the results of a typical crawling

maneuver. The system is initially at rest and aligned with LV.
At time t = 1000 s the elevator starts moving, according to

Eqs. (3), from the initial distance of I km from the Space
Station to the final distance of 5 km from the Space Station.

The control parameters are those selected in the previous
section. At the same time, the length of the lower tether is

controlled in order to compensate for the elevator's displace-
ment. In this case the thermal perturbations are negligible

with respect to the variations of the acceleration level and
therefore have been neglected.

The actual distance from the Space Station and the con-

trolled distance traveled by the elevator are depicted in Fig.
6a. The elevator-controlled velocity is shown in Fig.-6b. The

front and longitudinal acceleration components onboard the
elevator are shown in Figs. 6c and 6d. Both the acceleration

components onboard the elevator are compared to the respec-

tive unperturbed components (ideal case of an elevator that
moves without perturbing the system). The front component

during the maneuver is affected by the Coriolis force, while
the longitudinal component is mostly affected by the elasticity

of the system. The side acceleration component is not shown,

because it is negligible with respect to the other components.
The acceleration components onboard the elevator, of

which the longitudinal component is the greatest, have a
behavior close to the ideal and achieve smoothly the steady-

state values at the end of the crawling, as required by a

g-tuning type of maneuver.
The acceleration components onboard the Space Station,

along the SBRF, are depicted in Fig. 7. Since the lower plat-
form is controlled in such a way as to balance the elevator's

motion, the acceleration level onboard the Space Station are

well within the requirement for microgravity experiments.

Conclusions

The proposed tethered system supplements the Space
Station v, ith a factht) for carrying out experiments in a con-

trolled gravity environment. The acceleration level onboard
the elevator can be tuned between 1.5 x 10 -5 and 4 x 10-3g,

making possible the exploration of threshold acceleration
levels for several experiments proposed by the microgravity

scientific community.

The "quality" of the acceleration onboard the elevator is as
follows: the longitudinal component is the most critical, with

harmonic components of 10-_g at frequencies lower than
10-3Hz and of 10-Tg for frequencies between 10 -3 and

10 -2 Hz. The front component of the acceleration depends

primarily on the drag of the Space Station and ultimately on
its configuration. The side component of the acceleration is

negligible. The quality of the acceleration onboard the eleva-
tor is therefore better than onboard the stationary micrograv-
ity laboratory of the Space Station.

This tethered system moreover, can control the vertical

position of the system center of mass despite a modification of
the system's configuration. In particular, we have demon-

strated the system's capability of maintaining the acceleration
level on the station within the microgravity requirements,

notwithstanding the elevator's maneuvers along the upper
tether in performing g-tuning experiments.

The proposed system does not have an appreciable impact
on the acceleration level onboard the Space Station. The

tethered-system-related noise is a few orders of magnitude less
than the 10-Sg acceleration level specified for the station.
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Abstract--This paper analyzes the propagation of disturbances along the upper-tether of the Tether
Elevator_Crawler System. Both longitudinal and transverse waves are investigated as the waves propagate
from the station to the elevator, and beyond to the upper-platform. The model takes into account the
effects of gravity gradient and material damping. An estimate of the various damping mechanisms affecting
transverse waves is also provided in the paper. The frequency response functions at the elevator and at
the upper-platform are computed for either a longitudinal or a transverse perturbation of the tether
attachment point to the station.

l, INTRODUCI'ION

The Tether ElevatorCrawler System [I] (TECS) is

designed for carrying out experiments in a controlled

gravit} environment. A schematic of TECS is shown

in Fig. 1. An elevator (EL) is attached to a 10-km-

long tether which connects the station to the upper-

platform {UP). On the other side of the station the

lower-tether system is deployed. The length of the

lower-tether is adjusted in order to keep the orbital

center lthe point of zero apparent acceleration) of the

whole system at the desired location on the station

during the elevator's maneuvers.

By moving the elevator along the tether, the level

of apparent acceleration on-board the elevator can be

varied according to a pre-set profile. The quality of

the acceleration level is an important requirement for

those conducting experiments in the microgravity

laboratory. Suitable control laws for the elevator

motion have been devised [1.2] whereby the accelera-

tion fluctuations during the elevator motion are

smaller than 10% of the maximum value of the

steady-state acceleration.

Another important source of acceleration noise,

however, is the space station itself. Any perturbation

that reaches the attachment point of the tether to the

station propagates along the tether and eventually

perturbs the gravity laboratory on the elevator. An

analysis of how the perturbation propagates along

the upper-tether of TECS is therefore of primary

importance for assessing the actual quality of the

acceleration on the elevator.

The space station (SS) is a source of non-negligible

disturbances at a wide range of frequencies. In gen-

eral. the lov, frequency laround 10-3Hz) disturb-

ances are associated with aerodynamic and orbital

"_Paper presented at the Tether Dvnamws Workshop. San
Francisco. Calif. U.S.A., 16 Ma_ 1989.

perturbations, the medium frequency (from 10 -2 to

10 Hz) disturbances with the structural vibrations

of the station; and the high frequency (> 10 Hz)

disturbances with rotating machinery and human

activity on-board the station.

The wave propagation along the tether is influ-

enced by the tether material damping and to some

extent by the dissipative medium surrounding the

tether and the platforms. The tether is a complex

non-isotropic continuum and the damping varies

with the tether length according to a function which

depends on the damping model adopted. Further-

more, material damping of kevlar TM tethers is signifi-

cantly affected by temperature.

Recent investigations [3,4] have shown that the

damping of a kevlar tether is best represented by a

combination of viscous and structural damping. This

conclusion, however, is based upon a few experimen-

tal results obtained from short tether samples. Given

the'level of uncertainty of the test results, the most

accredited value of material damping ranges between

1 and 5% for the first longitudinal mode of a 10-km

tether.

The material damping affects primarily the propa-

gation of longitudinal waves, while it has a much

smaller effect on transverse waves [3]. Transverse

waves are also influenced by the interaction with the

surrounding atmosphere more than longitudinal

waves. A preliminary estimate of the damping pro-

vided by these mechanisms with respect to transverse

waves is given later on in the paper.

2. MATHEMATICAL MODEL

Figure 2 shows the upper portion of TECS and the

reference frames. If we assume the realistic case of

small perturbations, we can treat the longitudinal and

the transverse waves independently [5]. For each set

of waves we will compute the dynamic response to a
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Fig.

Upper-Platform

L = 10 km

Elevator _ =_j|

Station ||

,, °

L 10-15 km

Lower-Platform ----

]. Schematic of Tether Elevator/Crawler System
(TECS).

sinusoida] excitation of the tether attachment point

to the space station, that is the frequency

response function (FRF). The perturbation acts

along the tether axis for the longitudinal waves

while it acts transversely to the tether axis for

the transverse waves. We also assume that the

elevator and the upper-platform are point

masses. We start by analyzing the longitudinal

waves.

2.1. Longitudinal waves

With reference to Fig. 2 the equations of motion

and the boundary conditions are as follows [6]:

?-'_uj f ' _ ) d"_uj
EA + E A_+ 3f_"tau, j= 1,2#__'.=

k

m: Or:-"= -- EA + E'A -zz:-cg,+ 3fl:m,. u_2 z 2 = L 2

(1)

Displacements

u = longitudinal

v = in-plane

w = Oul-of-plane

Fig. 2. Schematic of upper-tether of TECS and reference
frames.

d2u-z -{EA , d ) du_ _ {EA"7 =

+ E'A_tj _ + 3f_2ml u-l z,= Ll ; z:=O

u_2(O,t_)= u_(L_,t.)

_ul= exp(/_/) z, = 0

where z, and z2 are the vertical coordinates for tether

segments 1 and 2, u__ and u: the longitudinal tether

stretches, /_ the tether linear density, fl the orbital

rate, m_ and m 2 the masses of the elevator and the

upper-platform respectively, EA the tether stiffness,

and E'A the tether axial viscosity. In eqns (I) we have

adopted a viscous damping model for the tether. This

is a reasonable approximation given the uncertainties

regarding material damping of long kevlar tethers.

Results obtained with a viscous damping model can

be applied to a different damping model in the

neighborhood of a given frequency for which an

equivalent viscous damping coefficient has been com-

puted. The boundary conditions express the balance

of the forces on masses m, and m 2, and the tether

continuity at the elevator.

After defining ut = u_,/Lt, u2 = u_2/l-a, z, = ii/Li,

z2=z_:/L 2, t =tt'l and o_ =_/fl we obtain non-

dimensional equations as follows:

=,j _.l + atJ Oz} + yu; j = I, 2

O )Ou_
02u2 -_a2_2 ! + z2=
-_ = b _t _ + Yu2 1

_= {02ul --E_a,?l ! +b
Ot: Ot J Oz I

_E_a, 22f I _ d)Ou2+ON _j_z_+yu _ (2)
k

z_=l; z2=0

u_(0, t) = u,(1, t)

ut = exp(icat) z_ = 0.

The non-dimensional coefficients in eqns (2) are

given by: q =c/flL_; q=c[flL_; a_= Lta/m_;

a_= L_,/m_; 2_ ._. Lt/L; 2_= I._/L =1- 2_; b=

E'A fl/EA and 7 = 3, where c = (EA/#)m is the longi-

tudinal wave speed, L, and L2 are the lengths of the

two tether segments, and L is the overall length of the

upper-tether.

Equations (2) are a set of linear, partial differential

equations with separable variables. Substitution of

u, = Rt (z_) exp(icot) and u: = R2(z_) exp(icot), where

R_ and R: are complex numbers, into eqns (2) leads

to the following ordinary differential equations:

O_R:

Oz----T + ,0] R_ ffi 0 j = 1, 2 (3a)

-co:R, = -,la2)., {1 +iob} OR2+
" _z_ 7R2 z2 = 1 (3b)
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where

dR_ E]aj22--wzRl = --_a,,;.l {I + iwb} -:.--
OZ I

dR,
x{l+iwb}-z-.-Z+yRi z)=i; z2=O

OZ2

R2(0) = RI(I)

R,(O) = I

(3c)

(3d)

(3e)

+_Z
}6= ,41 + ioJb

#, =8/E,

82= 8/_2. (4)

The solutions of eqns (3a) are R1 = A_ sin(8,zl)+

BI cos(B,z 1) and R: = A2 sin(8::) + B2 cos(#2z2).

After substitution of the above expressions into the

boundary conditions (3b)--(3e) we finally obtain the

FRFs at the elevator R, (1) and at the upper-platform

R2(I) as follows:

1) = [cos }6_- 3, sin 81RI(

sin 8, sin }6, + 3: sin 8t cos 8,-]-'

cos }6: - 62 sin )62 J
R:(I) = R,(I)OL (5)

where

and

3, =}61/alyl; 32=}62/a222

OL = [cos }62- 32 sin/_z]-I (6)

is an attenuation function which expresses how much

the longitudinal waves are abated when they propa-

gate from the elevator to the upper-platform

Since the equations of motion are linear the FRF

represents the displacement or acceleration at the

elevator or at the upper-platform for a unit displace-

ment or acceleration, respectively, at the station.

2.2. Transverse waves

For thin and long tethers (i.e. h/L ,_ ! where h is

the tether diameter) like those under consideration,

the bending stiffness can be neglected and the tethers

treated as perfectly flexible strings.

For #L ,_ m, and m:, as in TECS. the tensions in

the two tether segments are approximately constant

along the tethers. Consequently, the equations of

motion for the transverse waves have the same struc-

ture as those for the longitudinal waves. Further-

more. since the horizontal gravity gradient is null in

the orbital plane (in-plane) and different from zero in

the transverse plane (out-of-plane). the equations of

motion in the two planes are slightly different. The

out-of-plane equations are as follows [5]:

c"LL _" c)" "'C'_"

--:-==_T,+d--_ -f_:U_', J=l "_ (7)c_r ?tl c":-" '"

where _wt and w z are the out-of-plane displacements of

tether segments 1 and 2 respectively, T_ and 7": are the

average tensions in tethers I and 2, and d is the

viscous damping coefficient expressed in N-s (equival-

ent to E'A of longitudinal waves). In eqns (7) we have

adopted a viscous damping model for the transverse

waves. This is only a first order approximation as

explained later, which, however, leads to a simple

analytical solution of the equations of motion. This

simplification is acceptable in light of the numerous

unknowns involved in estimating the damping of long

kevlar tethers.

The in.plane equations of motion are readily ob-

tained by simply setting the gravity gradient term (i.e.

the fl2-term) in eqns (7) equal to zero and by substi-

tuting the in-plane displacements vj for %. The

average tether tensions in eqns (7) are given by:

T 2 = 3fl:m z L

Tj = 7"2+ 3fl:ml Li. (8)

After defining non-dimensional variables as

w I = _,t/Li, w:_= w_:_/L2, co = m/f] and t = _tfl we ob-

tain non-dimensional equations and boundary con-

ditions as follows:

d ) O2w,O2Ws=viot2 ! +4_)_T_-z_ + e.; j= I,:

I o)02w----22---v_a:_._ I +d,_ +yw: z2-- I (9)
Ot 2

{ d d _ 0w l
_2wt= --v_alZl i+ v_al22

d O )Ow 2

w2(O, t) = wt(l, t)

w I=exp(icot) zl=0

Where vl = ct /lILt , v z = cz/flL 2, d_ = dfl/T,,

dz = dfl/T_, 7 = -I for the out-of-plane waves and

7=0 for the in-plane waves, c_=(T_/p) _a and

c_ = (T2/p) _a are the transverse wave speeds in tethers

1 and 2, while the other symbols have been previously

defined. By a procedure similar to that followed for

the longitudinal waves, we obtain the FRF for trans-

verse waves at the elevator TR_ (I) and at the upper-

platform TR:(I) as follows:

= Icos _, - a_ sin _blTRI(1)

sin _ sin _ + 02 sin ¢)) cos _]-_

- r cos q_: - a_ sin O_ "]

TR:(1) = TR_ (l)Or (10)

where (9 T is the transverse wave attenuation function

given by:

Or = [cos 0, - or, sin g_:]- _ (I 1)
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and

l _.oJ: +'t4_2= ! + iwd2

al = _1/al Ai

a2 = ck2/a_22

r ffi(Ti/T2) l'_. (12)

By setting 7 =0 in eqns (9)-(12), we obtain the
corresponding expressions for the in-plane transverse
waves.

3. DAMPING OF TRANSVERSE WAVES

The damping of transverse waves is much smaller
than that of longitudinal waves. Since no bending
stiffness is considered, there is negligible linear damp-
ing of lateral oscillations in free space. Light damp-
ing, however, is provided by three different
mechanisms: (I) through orbital coupling (in-plane
only); (2) through non-linear coupling with the tether
stretch; and (3) through interaction with the atmos-
phere.

Mechanism (1) operates in-plane only: the orbital

coupling between the in-plane transverse displace-
ment and the longitudinal modes (through Coriolis
forces) produces a small linear damping of the in-
plane transverse oscillations. In Ref. [3] the modal
damping ratio is computed for linear oscillations of
a perfectly flexible, long tether with constant tension,
orbiting in space. With the parameters of TECS we
obtain a damping ratio for the first mode of _, 10-7%

which is negligible.
Mechanism (2) provides damping through the non-

linear coupling of transverse displacements (in-plane
and out-of-plane) and longitudinal stretch. A first
approximation of the non-linear damping ratio due

to non-linear coupling is computed in Ref. [3] by
equating the energy dissipated in lateral oscillations
to the energy loss associated with the elongation
engaged in a given lateral vibration mode. Further-

more, the longitudinal strain associated with the
lateral deformation is assumed to be uniformly dis-
tributed along the tether. Consequently, the non-
linear modal damping ratio for a tether segment of
length L. with an end-platform of mass M is given by
[31:

_k _ 2 I_LMv- _ "v/3 +

where k is the mode number, _ = #L/M the ratio of
the tether mass to the platform mass, and B, the

amplitude of the kth mode. After assuming a ratio
B_L = 0.01 for the first mode. E'A ffi 1100 N-s,
which is consistent with a damping ratio of 1% for
the first longitudinal mode. L = 10 kin. and M = 10

tons, we obtain a damping ratio for the first trans-
verse mode of about 10-3%.

The adoption of this value of damping ratio for
interpreting the numerical results for transverse
waves (obtained with a viscous model) should be
done with full awareness of the limitations involved.

The viscous model, in fact, provides increasing
damping for an increasing value of frequency,
while the non-linear damping is proportional to the
product k:B_ and hence to the energy stored in the
mode. Furthermore, unlike the viscous model, the

non-linear damping depends upon the modal ampli-
tude.

Mechanism (3) provides a negligible contribution
to damping of transverse waves at the orbital altitude
of TECS for the frequencies of interest.

In conclusion, even if the non-linear damping ratio
is three orders of magnitude smaller than that of
longitudinal waves, mechanism (2) provides the most

significant damping for transverse waves with non-
negligible modal amplitudes.

4. NUMERICAL RESULTS

Numerical results are based on the following par-
ameters for TECS: ml(EL)= 5 tons, m:(UP)= 10
tons, /a =4.9 x 10-3kg/m, L = 10km, Q= 1.119 x
10-_rad/s (i.e. an orbital altitude of 450kin) and
EA = 61,645 N.

4.1. Longitudinal waves

Figure 3(a)--(c) show the magnitude of the FRF at
the elevator vs the dimensional frequency for 2_ = 0.1,
0.5 and 0.9, which correspond to distances between

SS and EL of 1, 5 and 9 kin. The three plots in each
figure are for a damping ratio of the first mode of a
10-krn tether of 0, 1 and 5*/0 respectively. The reson-
ance peaks for zero damping are, of course, infinite
and are shown in dashed lines in the figures. Figure
3(d) is a 3-D plot of the FRF magnitude at the

elevator, for 2_ = 0.1, vs frequency and vs damping
ratio. Figure 3(e) is a 3-D plot of the FRF magnitude,
for a 1% damping ratio, vs frequency and vs frac-
tional distance 2_.

It is clear from these figures that a light material
damping is sufficient to provide a strong attenuation,
for frequencies > 2Hz, of the longitudinal waves
which propagate from the station to a l-kin-distant

elevator. The attenuation increases dramatically as
the elevator moves further away from the station and
the cut-off frequency decreases to about 1 Hz.

Figure 4 is a 3-D plot of the magnitude of the

attenuation function Ot for a damping ratio of 1%,
vs frequency and vs fractional distance 2_. It is

evident from the figure that a small material damping
is sufficient to provide a strong attenuation of the
longitudinal waves propagating beyond the elevator.
The elevator acts as an effective attenuator for the

upper-platform of longitudinal perturbations gener-
ated at the station.
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Fig. 3. Magnitude of frequency response function (FRF) at elevator for longitudinal waves vs frequency,
fractional distance :._ = L_ L. and tether material damping.

4.2. Transverse waves

Figure 5(ak--(c) show the magnitude of the FRF at

the elevator for out-of-plane transverse waves vs the

dimensional frequency for fractional distances

:,_ = 0.1,0.5 and 0.9. The three plots in each figure are

for a viscous damping ratio for the first mode of a

10-km tether of 10 --_, 10-: and 10 '% respectively.

For zero damping the resonance peaks would be
infinite.

The results for in-plane transverse waves do not

differ appreciably from those of out-of-plane waves

because the gravity gradient term plays a minor role

in the transverse wave dynamics.

By assuming a viscous damping ratio of 10-3% for

transverse waves (see previous section for the limi-

tations involved in this assumption), the transverse

perturbations in TECS are only moderately attenu-

ated as they propagate from the station to the

elevator. Additional damping devices may be added

to the system in order to improve the attenuation.

Figure 6 shows the magnitude of the attenuation

function OT for a damping ratio of 10-3%, vs

frequency and vs fractional distance :h. The elevator

DomplncJ : I *].

\
%

10 i0,1

Fig 4 Magnitude of longitudinal waves attenuation function (see text) vs frequency and fractional

distance for I°i, material damping.
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Fig. 5. Magnitude of FRF at elevator for transverse waves vs frequency, fractional distance 2_
and tether material damping.

= L t/rL,

acts as an attenuator for the upper-platform

of transverse perturbations generated at the

station. This may suggest a way to design a passive

damper to be placed between the station and the

elevator for increasing the attenuation of transverse

waves.

5. CONCLUSIONS

Perturbations propagate along the tether of TECS

from the station to the elevator and beyond, to the

upper-platform. However, a small value of viscous

material damping (1-5% damping is estimated for

kevlar tethers) is sufficient to abate dramatically the

longitudinal waves with a frequency above I-2 Hz.

The attenuation of the longitudinal waves increases

with the distance of the elevator from the station.

Transverse waves, on the contrary, are much less

attenuated because the only significant damping is

through non-linear coupling with the longitudinal

tether stretch. The damping provided by this mechan-

ism depends upon the transverse modal amplitude

and is about three orders of magnitude smaller, even

Dornping = I0 -3 "/.

i o

\,

20_

Fig. 6. Magnitude of transverse waves attenuation function (see text) vs frequency and fractional distance
for 10-3% viscous damping.



552 ENpaco C. Lo_zl_ and Mamo Cos_o

for non-negligiblemodal amplitudes (e.g.amplitude

of the firsttransversemode _ 1% of the tetherseg-

ment length),than the londitudinaldamping.

For both longitudinaland transversewaves, the

elevator attenuates the perturbations propagating

from the station to the upper-platform. This con-

clusion may suggest a way of designing a passive

attenuator for transversewaves to b¢ placed between

the elevator and the station.
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Abstract The Tether Elevator/Crawler System (TECS) consists of two end platforms tethered

to opposite sides of the Space Station. A variable-gravity laboratory is located onboard

an elevator which can crawl along the upper tether. This paper analyses the elevator's

attitude dynamics in order to evaluate its effect on microgravity applications. To this

end, a simulation model is described and numerical results are given for a steady-state

case. It is shown that the elevator attitude dynamics, without attitude control,

contribute additional spectral lines to the acceleration noise.
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1. Introduction

UPPER PLATFORM

rn1,2

ELEVATOR

3Al2,3 rn2
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3,,4

LOWER PLATFORM

m
4

Figure 1. Schematic of the Tether

Elevator/Crawler System {TECS)

The Tether Elevator/Crawler System (TECS) is designed for conductinl_

experiments in a controlled gravity environment. Two 10 km-iong tethers arc

deployed on opposite sides of the Space Station (SS). The variable-gravity laborator)

is placed onboard an elevator (EL), which can crawl along the upper tether (Fig. 1).

Because of the dual-tether configuration, variable gravity profiles can be generated

onboard the elevator while the acceleration level on board the stationary microgravity

laboratory of the Space Station is maintained below 10 -5 g.

The analysis carried out in Reference 1 demonstrates that TECS makes a negligible

contribution to the acceleration noise level onboard the Space Station. The tether-

related acceleration noise is, in fact, a few orders of magnitude smaller than the

required 10 -5 g. On the other hand, by moving the elevator along the upper tether,

the variable-gravity laboratory on the elevator experiences an acceleration level that
varies with the distance between the elevator and the system's centre of mass (CM).

From the upper boom to the tether's tip, the acceleration level ranges from

1.5× 10-5 g to 4× 10 -3 g, making it possible to explore thresholds and hysteresis

phenomena.

Onboard an elevator positioned 1 km from the Station, the acceleration fluctuations

Nomenclature

d
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t_ ,"2,I3 =
l =

rn
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Ilk,k + I m
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x,y,z =
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_,_,,,/ =

=

p =
_,0,¢ =

It® =
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principal moments of inertia

tether length
mass
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matrix defined by Equation (4)
rotation matrix

rotation matrix
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temperature
unit vector from the k-th to the (k+ l)-th mass

velocity with respect to the atmosphere

reference frame defined in Figure 3
inertial reference frame

pitch, roll, yaw angles

thermal expansion coefficient
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k-th lumped mass
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(g-quality) are about 10 -6 g at frequencies lower than 10 -3 Hz, and about 10 -7 g

for frequencies of between 10-3 Hz and 10 -2 Hz. Algorithms to control the motion

of the elevator have also been derived in Reference 1. These control laws allow the

elevator to travel over long distances without inducing a significant acceleration noise.

The analysis carried out thus far on the dynamics of TECS has treated the platforms

of the system (e.g. the Station and the elevator) as point masses. The influence of the

rigid-body dynamics of a particular platform upon the acceleration levels has been

neglected so far. This paper, on the other hand, evaluates the contribution of the rigid-

body dynamics of the elevator to the acceleration noise level onboard the elevator

itself. To this end, in addition to the model described in Reference I, a different

numerical simulation program has been developed. A description of this model will

be presented in the first part of the paper.

Numerical results show that the rotational dynamics of the elevator contribute

additional spectral lines to the acceleration noise. Because of the quasi-symmetrical

external forces, the centre of rotation (CR) of the elevator is very close to its centre

of mass. Consequently, the effects of the rigid-body dynamics are minimised when

the microgravity experiments are placed at the elevator's centre of mass.

The rotation-related spectral lines are also evaluated by applying Fast Fourier

Transforms (FFTs) to the acceleration components onboard the elevator. The

frequencies of the new spectral lines, obtained from the dynamic simulation, are then

compared to the theoretical values of the attitude frequencies. Finally, the new

acceleration spectra are examined in the light of acceptable threshold levels for

proposed microgravity experiments versus the frequency of disturbances.

The three-dimensional model is based on the discretisation of the system by means

of lumped masses, connected by massless springs and dashpots 2 (a lumped mass is

a point mass where the forces are applied and to which an area is assigned to take

into account the atmospheric drag). To the area and mass of each lumped mass, those

of the half-tether connecting them to the adjacent lumped masses are added. Depen-

ding on the trade-off between computing time and accuracy of the model, the tether

too can be simulated by lumped masses. In this case, up to 12 masses can be lumped

at different positions along the tether (Fig. 2).

2. Mathematical model

k-i

l,k

-_r e, k-l, k--_d, k-l, k

_ r_a,k

"" - N_e ,k,k+l -d,k,k+l
N

g,k _

k+l
Figure 2. Forces acting on a lumped ma,_



Thesystemmotionis described by force- and energy-equilibrium differenti,

equations, the unknown quantities in which are the temperature and the component

of the position and velocity vectors, in the right-handed inertial reference fram

(origin at the centre of the Earth, X-axis directed along the first point of Aries, X-?

equatorial plane) 3.

The environmental perturbations considered in the present analysis are: th

gravitational force, including the second zonal harmonic of the gravity field, th

aerodynamic forces and the thermal effects on the tensional forces.

The atmosphere is assumed to rotate with the Earth's ellipsoid and its density i.

computed using the US Standard Atmosphere 4. For each lumped mass. the aero.

dynamic drag is evaluated considering the velocity of its centre of mass relative t¢

the atmosphere.

The tether thermal inputs are: the solar illumination and the flux due to the atmo_

pheric drag. The only cooling process is the emitted radiation. Since the tether lengtl"

variation strongly affects the attitude dynamics of the platform, particular attention i:

devoted to the evaluation of the partial and total eclipse conditions of each iumpec

mass 5, in order to improve the accuracy of the modelling of the tether's stretchin_

due to thermal effects.

In the following, the attitude of the elevator is simulated by means of kinematics

and Euler's moment differential equations:

I'" co. 0ii.i]= -- cos ,# sin t9 -sin ¢ sin t9 0 w_

iv sin O -sin,pcos 0 -cos¢cos 0 sin 0

(1)

_t = [Mr + _s(l,..-I3)l/lt

_o2 = [M 2 + _)¢os(h-ll)l/i 2

_3 = [M3 + _)_2(!J-12)]/13

(2)

The unknowns in the above equations are the Euler's angles of the body reference

flame (whose axes coincide with the principal axes) with respect to the inertial

reference frame, and the body-frame components of the inertial angular velocity

vector.

The platform is assumed to be a rigid body, approximated by simple geometrical

elements (Fig. 3).

The torques are computed taking into account the aerodynamic drag and the tether

visco-elastic force, without the gravity gradient and attitude control.

The total aerodynamic torque is computed by adding the contribution of each

geometrical element (spheres, fins, cylinders), and neglecting the spin effect 5.

The tether tension is computed as follows:

Fekk+z = Exr____2 II,.k+)_lo.k.k+Z [I+e(T,-To.,)] 1 Uk.k+_
' ' lO,k.k + I

FdA,,_+I = 2_- I ETcr2mt_nk+l] 1'2lo.k.*+l(rn*+mk+l) [(R,+l - Rk) • Uj,.k+l]Uk._+l (3)

The transformation between the inertial reference frame and the body flame is given

by a 3-I-3 rotation matrix (M,o,_).

The attitude angles are defined with respect to a right-handed reference frame, with

origin in the centre of mass, and unit vector components, given by the rows of the

following matrix:

306 ESA Journal 1990. Vo/. 14



Figure 3. Elevator attitude reference frames

3

Q(0,0,2Z

M b =

p--

[(-W) x (- R)Ix [(-W) x( -R)] }, [(- W) x f- R)Iz

F- W) x(-R)I I(-W) x (-R)[ l(-W) x( -R)I

(-W) x (-W)y (-W)z

lWl lWl lWl

Rx R y R z

IRI IRI IRI

whereW = RxR.

The attitude angles a, fl and 3, are computed using the equations:

o_ = sin -i (-a3. l)

(4)

fl= sin -_ (a3.2x)
\cos ct/

y = sin-' (a2.' "_
\cos a/

(5)

where the a,j are the elements of the rotation matrix

T
Mw, _ = Mb M¢o¢ (6)

The system orbital and attitude dynamics are computed by solving a set of ordinary

differential first-order equations, using Gear's stiff method 6, which includes an

additional equation for each damper in order to control tether longitudinal oscillauons

arising from thermal shocks:.

Gear's algorithm adjusts the step size in order to achieve fast integration and model

the high-frequenc 3 oscillations. The foregoing requires a preliminary analysis of these

OWI_"IIN_,t.PAC_ m

OF _ Qt_a.rr¢
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frequencies and an accurate selection of the maximum allowed step size in order to

obtain a constant sampling step.

Particular attention must be devoted to initial conditions and physical parameters

characterising the system. An orbit-generator program is used to compute the initial

position and velocity vectors of each lumped mass: in addition to the Keplerian orbit.

a perturbed orbit is described by the first-order Kozai theory 8. The unstretched

lengths of the tethers and the initial conditions for longitudinal oscillation dampers are

computed by means of the equilibrium equation for each tether segment.

3. Acceleration levels The acceleration measured by an accelerometer package located at the centre of

mass of the elevator is the sum of the external, excluding the gravitational, and

internal forces (e.g, tensions) acting upon the platform divided by its mass,

By solving the differential equations, we compute the acceleration of the centre of

mass with respect to the inertial reference frame.

The acceleration of a point off the centre of mass with respect to the inertial

reference frame, is computed by using the relative-motion equation for a rigid body,

(7)

4. Numerical results Table 1 shows the system configuration and Table 2 the thermal and mechanical

characteristics of the Kevlar tether adopted. In order to compare the present

simulation model with the model described in References 1 and 7, the tether mass has

been neglected. Consequently, the longitudinal tether vibrations are not modelled m

these particular simulation runs.

The duration of the simulation run is 1.5 orbits, which includes three crossings of

the terminator. The simulation starts with the system at the ascending node. on the

X-axis of the inertial reference frame, at an altitude of 450 km and an inclination of

28.5 ° . The system is aligned along the local vertical and the Sun is at the vernal

equinox. The initial tether temperature is 290 K. All environmental perturbations are

acting upon the system. Only the longitudinal dampers are activated during the

simulation, because the in-plane and out-of-plane libration dampers make no signifi-

cant contribution to the acceleration during steady-state phases _.

The elevator, approximated by a right circular cylinder, has principal moments of

inertia !] =12=8619.8 kg m "_, 13=3906.3 kg m 2 about the longitudinal, transverse

and vertical axes, respectively. We assume zero initial attitude angles in order to stud}'

the steady-state attitude dynamics.

The analysis is further simplified by positioning the attachment points on the

vertical axis of the cylinder which, together with the previous assumptions, gives

O_3 = constant.

Figures 4 - 6 show the elevator attitude angles: the low-frequency oscillations are

due to in-plane and out-of-plane natural oscillations, temperature, and gravitational-

Table 1. Discretisation of Ihe system

Symbols Steady-state Plattbrm Tether Platform cross-

m Fig. I tether length mass mass sectional area

(m) (kg) (kg) (m:)

m I I0 000 21.8 I0

l f,2 8998

m, 5000 24.2 10

'/2.J ,:%_, 998

, m._ W 306 752 27.9 2700

l_ I0 500

n14 I[1 00(I 255 10

Table 2. Kevlar tether characteristics

Tether cross- Radius 1 x 10-3

sectional area Linear density 4.85x 10 -a kg m-

(m 2) Solar radiation

absorptivity 0.75

9.0 Thermal emissivity 0.5

Specific heat 2500 J kg - _ K - i

10.0 Young's modulus 1.96 × 10 m N m -_

Thermal expansion

It,5 coefficient -2 × 10 _ K-

Damping coefficient 0 10

t0.5 Drag coefficient 2
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force variations. The effects of damped longitudinal oscillations are negligible and,

in addition, the plot scale does not reflect the natural frequency of the pitch and roll.

The acceleration and its spectrum for the elevator centre of mass and for a test point

P are plotted in Figures 7 and 8 and Figures 9 and 10, respectively. Note that the DC

component is omitted in the spectra shown in this paper.

The acceleration levels are mainly due to the contributions at low frequencies and

at the pitch natural frequency (6.7x 10 < Hz), which provides an acceleration of

about 10 -7 g.

The elevator dynamics do not appreciably influence the acceleration level of the

Space Station centre of mass, as shown in Figures 11 and 12.
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Figure 13. Test point Q(0.0,2) longitudinal and
vertical acceleration component spectrum

A second simulation was run in order to investigate the effect of an initial pitch

angle of 10-2 tad upon the 1 and 3 acceleration components at a test point Q. Only

two harmonic components, at the pitch natural frequency and twice the pitch natural

frequency, were present in the axis-3 component (Fig. 13).

A simplified analysis of the attitude oscillations is given below to validate the

numerical results.
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5. Simplified attitude
model

With reference to Figure 3, the equations that describe the attitude dynamics of the

elevator orbiting the Earth at constant rate _o, under the assumption of small angles.

areq:

Roll 3 + (q¢,+'-"+ b)_ = (l-q),,,'_

Yaw ;1= -¢_

Pitch _ + ba = 0

where

q = l-I3/I I

d
b = CF_.d,. + F+.d+P 7

ON_INAL PAt_ f8
OF POORQu n' ,

Note that the yaw dynamics are coupled to the roll dynamics. The influence of the

yaw upon the roll. however, is attenuated by the factor (l -q). Furthermore. the roll

motion has a frequency very close to that of the pitch motion, which is equal to

v'b/2 r.

Let us consider, for instance, the effects on the acceleration levels due to a small

pitch perturbation a. Since the pitch motion is decoupied, as shown in Equation (8),

from the yaw and roll motions, we can write the in-plane components of the

acceleration at a point (p_,0,p 3) on the elevator as:

+ p_3 -" p, [_(2&-_)-&=]

- pla + p:_[_(2a-Lc)-a-]

(9)

v,'here /_cv, and Rc+t.: are the acceleration components at the elevator's centre of

mass along the flight direction [.+I and the local verxJca] <2_, respecttvel), For an

310 ESA Journal 1990, Vc, I 14



unperturbedsystemalignedalongthelocalvertical,Rcu,_ = 0 and RcM.: coincides

with the gravity-gradient acceleration.

Let us assume that the system is stationary and that only the pitch angle o_ is

oscillating with an amplitude of 0.57 ° (10 -2 rad) at its natural frequency ",_/2r. If

the test point is located on the yaw axis 2 m from the elevator's centre of mass, from

Equations (9) the maximum acceleration components are about 3.6 x 10 -4 g along

axis-l, and 3.8×10 -4 g along axis-3. The former is primarily related to the

tangential acceleration o3a. and the latter to the gravity gradient. Moreover,

Equations (9) provide other useful information about the acceleration. Specifically,

while the gravity gradient and tangential terms have a natural frequency of _,"b/2r,

the centrifugal term (within square brackets) has two harmonic components at w_/27r

(i.e. 2_0_-terml and at ,,'b/r (i.e. c_2-term), respectively. It should also be noted that,

for small angles, the gravity-gradient term oscillates at the frequency x/b/2r along

axis-I and is constant along axis-3.

The numerical model presented in this paper has proved to be a valuable tool for

analysis of the attitude dynamics of a space elevator. The overall system dynamics

agree with the results of Reference 1, where a model without the elevator's rotational

motion is used.

This paper has shown that the acceleration onboard the elevator is affected by its

rotational motion. The rotation-related dynamic noise grows as the distance between

the microgravity experiment and the elevator's centre of mass increases. For the

particular elevator geometry and inertia adopted in this paper, the two harmonic

components of the acceleration have frequencies of 6.7x 10--" Hz and 1.4× 10 -t

Hz. which are low enough to affect some microgravity processes.

However. a simulation run with equilibrium initial conditions and environmental

perturbations demonstrated that the amplitude of the attitude motion (and hence the

related acceleration) is negligible. Consequently, the effect of the attitude dynamics

on the acceleration levels is significant only during transient phases.

Further analysis is required with regard to: (i) damping and control of the elevator's

attitude motion: lii) coupling between the elevator's attitude and the tether's

vibrations: and, to a lesser extent, (iii) effects of additional disturbances, such as aero-

dynamic torques, which may be significantt tot an asymmetric elevator's geometry.

6. Conclusions
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4.0 TETHERED SPACE CENTRIFUGE

Tethers with a length of a few kilometer could be used to build a space centrifuge with

a very large diameter and a very small rotational rate. Rotational rates higher than 6 rpm

produce canal sickness in humans while "apparent" gravity level smaller than 0.3 g are

undesirable because they impair motion. The two values above imply a centrifuge with a

diameter of at least 16 m. Moreover, if an optimal environment is desired for human

habitation, the centrifuge should rotate at a rate smaller than 2 rpm and provide a gravity

level of 1 g. These values require a centrifuge with a diameter of at least 420 m. A 1-km

tether, connecting two space vehicles and spinning about an axis perpendicular to the tether

could be an ideal space centrifuge with an optimum environment (the so called optimum

comfort zone) for human habitation.

A tethered centrifuge is proposed for a demonstration flight in LEO in the following

paper. A 1-km tether connects a Delta second stage and a General Electric reentry capsule

to provide a 1-g gravity level at the capsule with a rotation rate of about 1 rpm.

The paper addresses the issues of: desirable gravity environments for human

habitability; quality of the acceleration levels on board the capsule during steady rotation;

spinning and despinning of the centrifuge; and stability of the tether oscillations during the

steady rotation phase.

See also Quarterly Report No. 16 of this contract for more details.
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Dynamics and Stability of a
Tethered Centrifuge in Low

Earth Orbit

B. M. Quadrelli I and E. C. Lorenzini 2

Abstract

The three dimensional attitude dynamics of a spaceborne tethered centrifuge for artifi-
cial gravity experiments in low Earth orbit is analyzed using two different methods. First,
the tethered centrifuge is modelled as a dumbbell with a straight viscoelastic tether, point
tip-masses, and sophisticated environmental models such as non-spherical gravity, ther-
mal perturbations, and a dynamic atmospheric model. The motion of the centrifuge dur-
ing spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of
the tether is developed for analyzing the stability of lateral tether oscillations. Results in-
dicate that the maximum fluctuation about the 1-g radial acceleration level is less than
l0 -3 g; the time required for spin-up and de-spin is less than one orbit: and lateral oscilla-
tions are stable for any practical values of the system parameters.

I. Introduction

The planned Space Station and Manned Mission to Mars will require astro-

nauts to endure long periods under weightless conditions detrimental to human
physiology. Recent achievements in human endurance to zero gravity non-

withstanding, an artificial gravity environment may be far preferable for

long missions.

The motivation behind this paper is to prove that a tethered centrifuge is ca-

pable of providing the desired level of artificial gravity at low rotational speeds.

The advantages of a long tethered centrifuge with respect to a much shorter

rotating spacecraft are optimum artificial gravity environment; reduced side

Coriolis accelerations, which are unpleasant for human habitability; and simplic-

ity in reconfiguring the centrifuge by reeling the tether in and out. In summary,

a tether centrifuge can provide any desired value of fractional-g or a 1-g level by

rotating at a much lower rate than a conventional centrifuge.

tVisiting Scientist. Radio and Geoastronomy Division, Harvard-Smithsonian Center for Astro-

.physics. Cambridge. MA 02138.
"Staff Scientist. Radio and Geoastronomy Division. Harvard-Smithsonian Center for Astro-

physics, Cambridge. MA 02138.
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4 CiuiKim|li and Lomnzini

The tethered centrifuge analyzed in this paper is not intended for human hab-
itability, but for carrying out experiments on relatively small samples at various

artificial gravity levels in low Earth orbit (LEO), with an emphasis on the 1-g
level. The system considered is formed by a 200-kg General Electric (GE) reentry
capsule at one end and a Delta II second stage, with an empty mass of 872 kg, at

the other end. (See Fig. 1.) The tether length is 1 km as proposed by the Ad-
vanced Project Office of the Marshall Space Flight Center [1, 2].

The feasibility of a tethered centrifuge in space has been demonstrated in [1]

and [2]. The dynamics during spin-up and de-spin of a tethered centrifuge have
been analyzed in [3] for a tether length of 1 km and heavy end masses. In [3],
however, the effects of the environment upon the artificial gravity levels were

not analyzed.
The three dimensional attitude dynamics of a tethered centrifuge in LEO is

investigated in this paper using two different dynamics models.
First, the tethered centrifuge is modelled as a dumbbell system with a straight

viscoelastic tether, point tip-masses, and sophisticated environmental models
such as non-spherical gravity, thermal perturbations, and a dynamic atmospheric
model. These environmental models are currently used for other dynamics stud-

ies of tethered systems [4]. Particular attention is given to the acceleration fluc-
tuations on board the capsule at the tether tip during spin-up, de-spin, and
steady-rotation phases.

Second, a continuum model of the tether is developed for analyzing the stabil-
ity of lateral oscillations during the steady-rotation phase as a function of the sys-
tem parameters. This model has also been used for computing the system's

natural frequencies, both analytically and numerically.

II. Lumped-Mass Model

Equations of Motion

The motion of the system is described with respect to a local vertical local

horizontal (LV-LH) orbiting reference framexyz, which rotates with orbital mean
motion fl and geocentric radius Ro. The origin of this frame coincides with the
initial position of the center of mass of the system and the coordinate axes are z

along the local vertical, x toward the flight direction, and y in the out-of-plane

DELTA SECOND STAGE
2000 POUNDS

GE CAPSULE
S00 POUNDS

FIG. 1. Arlificial Oravily Experiment Configuralion.
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direction (Fig. 2). The geocentric inertial reference frame X_Y_Z_, also depicted
in Fig. 2, is as follows: Xf points toward the vernal equinox, Z_ toward the North

Pole, and Y_ completes the right-handed reference frame.
The system is modelled with N point masses m, connected by massless springs

and viscous dash-pots, p, is the radius vector of mass m, with respect to the or-
bital reference frame and ft,, fa,,f, are the gravitational, drag, and tensional
forces on each mass per unit mass. The equation of motion of the generic ith
mass is as follows [4]:

+ rio + 211 x _ + 11 x (fl x p,) = f_, + r_, + f,,, (I)

Substitution of p, = x5 + y,j + z,k into equations (1) yields:

_, - 211_, - 1_, = _,, + fs,, + jr,,,

y, = f,,, + f,,, +

E + 21"1k, - 11:(z, - Ro) = fs,z + f_,z + f,,:. (2)

If e = e(coscsin0i + sinai + cos_,cos0k) is the vector from m_ to m_

(Fig. 2), then

___t[x_ - x_]

O=tan Lzj _ z. j

[
-- Y_]_0= sin-ltY' _

are the in-plane and the out-of-plane angles with respect to LV.
Following the assumptions of [5], the kevlar tether is assumed to be perfectly

elastic without any bending stiffness. Since, as shown later on, the spring-mass

m N

1

n I

m 1
Z

Io

FIG. 2. Schematic of Tethered Centrifuge and Reference Frames.
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frequency is too low for the material damping to be effective, a longitudinal

damper is added at one of the tether attachment points. From [5] a damper effec-

tive in damping the spring-mass mode of the system is tuned to the frequency of
that mode and has a damping ratio ,f = 0.9. Consequently, the damper stiff-
ness ke is equal to the tether stiffness per unit length k = EA/Co where EA is

the tether axial stiffness. Neglecting the tether mass, the damper's damping
coefficient is b = _ kX/'_,q, where M,q = (mr x ms,)/(ra, + m_) is the equiva-
lent mass.

The geometry of the tether with the longitudinal damper is depicted in Fig. 3,
where f = eo + C,_* 6 + 6_, and

e,h = eoart, thermal stretch; (4)

6 = fa = T/k, elastic and damper stretches. (5)

Here eo is the tether natural length, a is the tether thermal expansion coeffi-
cient, T the average tether tension, and r/the tether temperature.

In order to account for the motion of the damper, assumed massless, the fol-

lowing equation,

k,, = k,_ + b_a, (6)

is added to equations (2). Furthermore, the components of the tensional forces
per unit mass in equations (2) are given by:

f,,., = (X., - T,.,_,)/rn,; (7.1)

T_., = T,(x,_._ - x,)/_,; (7.2)

Z = _ 6, ; (7.3)
_o

FIG. 3.

7"rt2

" II2o

> .Z'.

Schematic of Tether and Damptng Element.
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where (,., and T, are the elastic stretch and the tension of the ith tether segment.

Similar expressions for f,_., and for f,., are obtained by replacing x, with y, and z,,
respectively, in equations (7).

Environmental Models

The system is acted upon by atmospheric, gravitational, and thermal perturba-
tions. An exhaustive description of accurate environmental models normally
used for simulating the dynamics of tethered systems is given in [6].

The gravity model adopted for this study has the Jo and J: zonal components of
the field. The latter term produces a secular effect on the osculating elements of
the orbit, such as mean anomaly, argument of perigee, and right ascension of the

ascending node. The J:-term also produces a small libration of a long tethered
system such as the one under consideration. The gravity acceleration on the ith
mass is given by [7]:

f_., = [Q]{-grad(Ui: + U{°)} r (8)

where [Q] is the transformation matrix between the geocentric inertial frame
and the orbiting reference frame, and tl s' tl so_,-,_, are the potential energy compo-
nents of the Earth's gravity field associated with the J: and Jo terms. Specifically,

U{o=
l_t '

[ _R_:J2 3Ui:
=_,] _( sin-'A,-1); (9)

where _ and R_ are the gravitational constant and the equatorial radius of the
Earth, A, the geocentric latitude, and R, the geocentric radius vector of the
ith mass.

With regards to the thermal model, it is assumed that the tether receives ther-

mal energy directly from the Sun, from the Earth's aibedo, and from the Earth's
infrared radiation. Cooling is provided by emitted radiation only. Furthermore,

the reflectance of the Earth is taken to be isotropic and diffuse, and the spectral
distribution of the reflected radiation is considered equivalent to the spectral
distribution of the incident radiation. Aerodynamic heating is neglected. The

tether equilibrium temperature is computed by equating the net thermal flux to
the time derivative of the tether thermal energy. The thermal balance equation
is taken from [4] and it is not shown here for the sake of brevity.

The atmospheric density model is an analytical function of the exospheric
temperature and the local altitude [8], which fits Jacchia's 1977 model. The

agreement with Jacchia's 1977 model for the same exospheric temperature is
within -'-10%. This atmospheric model takes into account dynamical thermo-

spheric corrections, such as the diurnal variation (function of solar activity) and
minor fluctuations like the seasonal-latitudinal variations of the density above
150 km. The atmospheric density profile covers altitudes from the ground up to
1000 km.
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The deceleration of the ith-lump due to the atmospheric drag is

1

i'd., = -- _CaA,'y,v,v,, (,0)

where A, is the frontal area ofith mass; Ca is the drag coefficient (=2.2); "y,is the

atmospheric density at height h,; and v, is the wind velocity vector.
It is assumed that the atmosphere rotates rigidly with the Earth. Equa-

tions (7), (8), and (10) are then substituted into equations (2).

III. Apparent Accelerations

For a system on a circular, unperturbed orbit of radius Ro and orbital rate I2,

calling e, (radial), e0 (lateral), e_ (tangential) the unit vectors of a body reference
frame (tether frame) rigidly attached to the tether, the inertial radius of the GE
capsule is

R = [Ro cos O cos ¢_ + p]e, - [Ro sin 0]ee - [Ro cos 8 sin ¢_]e_,

where p is the radius vector of the capsule (the subscript i = 1 has been dropped

in the equation above). The acceleration on board the capsule is

ii= Ro + [/;- in + b)_pcos:_- p,b-']e,

+ [(op+ 2Fl_+ 2_b)cos_ - 2p,b(b+ f_)sin@]ee

+ [p(fl+ 0)zsin@ cos ¢_+ pff+ 2_b_b]e,. (ll)

Ncglectingthe dragdeceleration,the apparentacceleration_ atthecapsuleis
as follows:

i = r,- R. (12)

Assuming a sphcricalgravityfield,thegravityaccelerationis

_[ 1 ou'o I ou'o ]
aUS°e,+ ee + --_,e, , (13)

& = to L-_P p cos,pas p a,p

where fo is the gravity acceleration at Ro.
Consequently, the radial, lateral, and tangential acceleration components are

as follows:

t_, = --_ + ,O'_b2 + (_ + /_)2p COS2(p _ N2p + 302p CosZO COSZ(p (14.1)

ae = -0p cos (p - 2p(t_ + fl) cos #_ + 2p_b(0 + fl) sin

- 3fl:p cos _ sin 8 cos O (14.2)

6_ = -p_ - 2_ - p((_ + fl): sin _ cos _ - 30:p cos:0 sin ¢_cos _p. (14.3)

An accurate estimate of the average steady-spin velocity which provides a 1-g

acceleration at the capsule is easily obtained from equation (14.1) after noting
that _ = _ = 0 because for a steady-rotation rate much greater than fl the fluc-

tuation of the tether stretch, owing to the gravity gradient, is negligible with re-
spect to the centrifugal component of the stretch. Moreover, for a centrifuge
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with the spin plane initially parallel to the orbital plane and neglecting second

order effects due to the J_,-term, _o = _b= 0, and equation (14.1) yields

_, = p(0 + fl): - pfl: + 3..Qsp cos'-0. (15)

During the steady-spin phase, the largest contribution to the acceleration is
provided by the first term, namely the centrifugal component, while the contri-

bution of the gravitational gradient is negligible. The average inertial spin veloc-
ity for a 1-g radial acceleration at the GE capsule of a l-km long centrifuge is
1.05 rpm. The average tether tension is 1960 N.

IV. Simplified Analysis of the Motion of Fast Spinning Systems

The well known linearized equations of motion for a dumbbell system of
tether length ( are:

+ 22(0 + fl) - 2_b(0 + fl) tan _ + 3fl: sin 0 cos 0 = Qe

2E
46+ -_-_b + sin r¢ cos _[(0 + fl) 2 + 31-12cos:O] = Q,, (16)

with the assumptions of massless tether, point tip-masses, and circular orbit. Q0
and Q, are the in-plane and out-of-plane generalized torque, respectively.

For a constant tether stretch and tom I_ fl, where tom = to + fl is the inertial

average spin rate and to is the average value of 0, and for small out-of-plane
angles, equations (16) yield:

+ 3fl: sin O cos O = Q0 (17.1)

46+ to_N_= Q.. (17.2)

Equation (17.2) shows that the out-of-plane motion for spin velocities much
greater than the orbital rate has a resonant angular frequency equal to tom.

V. Control Laws for Spin-Up and De-Spin Maneuvers

The space centrifuge is spun up and down by using two thrusters on the tip-

masses with equal thrust levels, firing perpendicularly to the spin axis. At the
start of the spin-up maneuver, the centrifuge is assumed to be fully deployed and
aligned with the. local vertical.

The control laws are derived for a system spinning in free-space. They are

later implemented into the numerical model described in Section II for simulat-
ing the response under more general conditions.

The thrust force F, during spin-up, is commanded according to a proportional-
derivative law as follows:

F = -k2(0- to.t)-_0, (18)

where _o. is the steady-spin velocity.
For any value of k, and of the damping ratio # (which is assumed equal to

0.9), k2 = 2_x/'-M-_.qx/_t e [9]. In order to reach the steady-rotation in about
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2000 seconds (one third of the orbital period) with a maximum thrust of about
20 N,k, = 1670 Nm/rad and k_ = 9.457 × 105 Nms/rad.

The control law for the de-spin maneuver is

r = - o - 7: (19t

The thrust F has its maximum value at the initial time because the value of

the angular velocity # is different from zero.

The total propellant consumption G is obtained by integrating the total instan-
taneous thrust F over the maneuver duration At as follows:

f_r IFI dt

G = l,pg ' (20)

where l,p is the specific impulse. A strategy for reducing the total propellant con-

sumption during the spin-up phase is suggested in [3]: the tether is deployed be-
yond its final length, the centrifuge spun up to the steady-state value of the
angular momentum, and the tether is then reeled in to its final length. Since the

total impulse varies inversely with the tether length, the strategy of [3] reduces
the propellant consumption with respect to a spin-up maneuver at constant
tether length. The conventional technique, however, is followed in this paper
because the proposed centrifuge makes use of the Small Expendable-Tether
Deployment System (SEDS) [10] for deploying the tether to its final length but

the SEDS deployer can not retrieve the tether once it is deployed.

VI. Motion Of The Tether Treated As A Continuum

Equations of Motion

Restricting the motion of the tether to the orbital plane, the equation of mo-
tion for the in-plane transverse vibration of an element of tether of mass dm at a
distance R from the center of the Earth is (Fig. 4):

Itdrn = E + F_, (21)

where F, is the tensional force, Fs the gravitational force, and other external per-
turbation forces have'been neglected. Moreover, since the system is stiffened by
the centrifugal force, the tether deflections are small.

The tether is assumed to be a uniform string of constant length C with no
bending stiffness, clamped at its ends to the point masses rn_ and m2. These geo-
metric boundary conditions imply that m_ and m,_ always lie on the x axis of the
tether reference frame.

The analysis is also restricted to the steady-rotation phase. The material
damping is neglected since it is reasonable to assume that the damping has a sig-

nificant influence only when transverse deflections are large. The radius vector
to the generic tether element is

R = (x - Ro cos 0)i + (y + Ro sin 0)j, (22)
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FIG. 4.

Y___2 x m2

_._y CM R

Reference Frame for the Continuous Model.

and the acceleration

= [.i: - 0y - 2(0 + II)y - x(0 + ,.q): + Roll: cos 0]i

+ [j,; + 0x + 2(0 + fl)._ - y(O + fl): - Roll" sin 0]j. (23)

Since Fs = -/.t(R/IR]3)din, using a binomial expansion and neglecting second
order terms,

F_ = -II2dm{[x(1 - 3 cos:0) + 3y sin 0 cos 0 - Ro cos 0]i

+ [y(1 - 3 sin20) + 3x sin 0 cos 0 + Ro sin 0]j}. (24)

The tensional force F, is given by [11]:

F, = _exl + +-- (25)
\ _x- 0x ,,-,F.I

g

Defining o- = dm/dx as the mass per unit length of the tether, the equations
of motion are

J/-x(O 2 + 2_}11+3112cos:O)- y 0-_1"1 sin 20 - 2_,(0 + 11)- e Ox

(26.1)

( 32 )y- y(tT: + 20f_ + 3flZsin'0) +x 0+_fl sin 20 + 2._(0 + fl) =

1 [TO2y aT by]-_t ax:+_ " (26.2)

The assumption of small transverse deflections makes the analysis tractable.
as the tension becomes a function of the variable x only and the Coriolis term
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[-2_'(0 + f_)] is negligible. Defining s = x + el, where el is the distance be-

tween the system's center of mass and one of the two tip-masses, the tension
along the tether is as follows:

T(s)=o.(O,+2Ofl +3Ft2cos,.O)[(f:-s")M_e] + _ . (27)

Substituting equation (27) into equation (26.1), assuming that the system is
f..ollowing its rigid body oscillation forced by the gravity gradient (i.e.
0 + (3/2)11-' sin 20 = 0) and defining the variable z = s/e and the parameter

A = I + 2M,q/cr(. equations (26) yield:

1 [ ]j_=2. (0z+ 20f] + 30: cos:0) (A- z:) 02)'- 22 0"v
Oz: OzJ

+ (0z + 20fl + 31q" sin'-0)y, (28)

with the boundary conditions y(0) = y(1) = 0.

Stabilitv Analysis

Separating the variables in equation (28), after substitution of

y(z,t) = _.F.(t)G.(z), (29)
tim[

equation (28) yields:

F. + [(B_, - 1)(0" + 2b_) + 311' cos-'0(B_, + 1) - 3I]:]F. = 0, (30.1)

and

CA- .-")d'°"'I°"
dz" dz + 2BZ"G" = 0, (30.2)

with G(0) = G(_ = 0, and B. the natural frequency of the nth mode.

By replacing 0 with its average value to and defining r = _ot, equation (30.1)
simplifies as Iol'.,,ws:

/_. + [_5+ 2E cos(2r)]F. = 0. (31)

Equation (31) is Mathieu equation with the parameters given by:

. to" + 2tof/ + _2
tat)"

3 I)-'
= _-----_(B_, + 1). (32)

tO"

Eliminating tO. equations (32) yield:

(B.z - 1) 1 ,a

(5 = (B_ - 1) + 2(B' ;, +D_ + [3(B_, + 1)]'':e (33)



Dyrmmlcs and $1sblllly of II Tethered C,entrlfuge in Low Earth Orbit 13

The superposition of this curve onto the Strutt's diagram [12] enables the com-
putation of the boundary values of the parameters 8 and e for stable oscillations.

Notice that the shape of this curve depends on the value of the nth eigenfre-
quency B., and it is therefore necessary to solve the spatial problem first.

Under the simplifying assumption that the tension is constant along the tether

and equal to its average value over one spin period, the time dependent equation
of motion yields:

L + [B2. - 02 _ 200 - 3122 sinZO]F. = 0, (34.1)

and the spatial equation

d2G" °'ez z
dz---T + -T-B. G. = O. (34.2)

Equation (34.2) represents the motion of a string under constant tension with
natural frequencies

a. = 7- " (35)

This enables the following formulation of Mathieu equation:

F. + [8_ + 2el cos(2r)]F. = 0, (36)

with the new parameters

T //2'1'7"2 _-_2

8_ cre 2 _o" 2_o" 1

3 fl 2

• 1 =_ 4 _2- (37)

The oscillation is unstable for small values of e if ,5 = m"/4 where m is

an integer.
For a 1-kin-long centrifuge with 1-g artificial acceleration at the capsule

_o = 951-1, 8t = 483.1n2 - 1, and e_ = 8.31 × 10-5.

From equation (33) a general expression for spinning tethered systems can be
derived. Substituting the expression of B., equation (33) yields:

8, (r"w'_' - 1) + 2(rw2rr 2 - 1)_1 + [3(rw2"n"2 + 1)]_/2e_:2
= 3(r_"rr: + 1) , (38)

where r = M,q/_re is the equivalent mass to the tether mass ratio.
Figure 5 shows 8, from equation (38) for small values of e,, n = 1 (first mode

of lateral vibration), and three different values of oJ. For any practical values of

the system parameters and a tether length of 1 km, the lateral tether oscillations
are well within the stability boundaries. The faster the system spins and the

lighter the tether with respect to the end masses, the more stable the oscillations
are. These results are confirmed in [11] and [14].
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FIG. 5. Approximate Location of Boundaries between Stable and Unstable Solutions of
Mathieu's Equatlon, valid for small • (from Ref [13]) and Parametric Representation of the

Characteristics Lines of the Space Centrifuge.

Eigenfrequencies

The natural frequencies can also be computed by modelling the system with

N lumps. Table 1 shows the natural frequencies, computed by means of an IMSL

TABLE 1. Natural Frequencies (Hz) of the Tethered Centrifuge (Inertial Spin Rate = 1.05 rpm)

Mode
Number

3
4
5

2-D Lumped
free ends

10 lumps
2.54 10 -3

8.32 I0 -2

9
10

0.379
0.747
1.092
1.404

2-D
Contimmm
fixed ends

0.3803
0.7607
1.141
1.521

i2-D Lumped
llx_d ends

8 int. Imnps

0.379
0.746
1.090
1.402

7 1.673 1.844 1.671
8 1.845 1.901 1.837

1.892 2.282 1.889
2.053 2.662 2.049

Mode Type

spring-mass
Ist transverse

2nd transverse
3rd transverse
4th transverse
5th transverse

Ist longitudinal
6th transverse
7th transverse

11 2.152 3.042 2.148 8th transverse

12 3.630 3.689 3.618 2nd longtudinal
13 5.305 5.533 5.289 3rd longitudinal
14 6.819 7.378 6.799 4th
15 8.126 9.223
16 9.187 10.067
17 9.968 12.912
18 10.447 14.757

longitudinal
8.103 5th lonqitudlnal
9.160 6th longitudinal
9.939 7th longitudinal
I 0.417 8th lon_Itu dlnal
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numerical routine, of a 1-km-long system modelled with 10 lumps. Also in

Table 1 are the values of the natural frequencies for a fixed-ends continuous

string with constant tension and for an evenly spaced lumpy string with equal
lumps and fixed ends, which are given by [15]:

f_(longitudinal) = --_rl_ . [ nrr]s,n 2(/V + 1)

f,(transverse,= 1 _/-_ ' [ nrr ]-- sm . (39)2Cff -S-1)

In equations (39), n is the mode number, N the number of tether lumps, m the
mass of the lump, and e the distance between two successive lumps. Since ac-

cording to [14], a 4 lumped-mass system provides the lowest natural frequencies
with an accuracy of 4% with respect to the continuous model, the 10-lump model
adopted for the centrifuge is more than adequate for computing the low order
natural frequencies.

VII. Numerical Results

Numerical results are based on the parameters shown in Table 2. The dynam-

ics simulations have been carried out by using a standard variable step. fourth
order Runge-Kutta routine for integrating equations (2). The system is modelled
with two lumps only (i.e. the tip-masses) connected by a viscoelastic tether. Be-
cause of the high tether tension and the relatively stiff tether, the simulation is

very CPU intensive, even with 2 lumps. The addition of more lumps along thc
tether makes the CPU time prohibitively high and, to a certain extent, unneces-

sary because thanks to the high tension the tether shape is very close to a
straight line.

Steady-Rotation Phase

The centrifuge has its spin axis initially perpendicular to the orbital plane and
spins freely, with an initial inertial spin velocity of 1.05 rpm that provides a 1-g
gravity level at the GE capsule. The components of the apparent acceleration on
board the GE capsule are shown in Figs. 6(a-c). The tangential component is
along the tangential velocity, the radial component is along the straight tether.
and the lateral component is perpendicular to the spin plane. The lateral and

tangential components of the acceleration are negligible. The radial component
shows fluctuations smaller than 0.8 mg about the desired value of 1 g. The low-
and high-frequency fluctuations are related to tether temperature variations,

J2 effects, and gravity gradient. Because of the low spin rate, an object on board
the capsule moving at 3 fps (i.e. the speed of a walking person) in a direction
perpendicular to the spin axis is subjected to a side Coriolis acceleration of
only 0.02 g.

The centrifugal gradient is 10-3 g/m at the steady-rotation rate of 1.05 rpm,
which is smaller than the maximum value of the optimal rotational velocity of
2 rpm [16]. As shown in Fig. 7, the tethered centrifuge is long enough to provide
a dynamic environment well within the "optimum human comfort zone." The

optimum comfort zone is the region of gravity level versus rotational speed that
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TABLE 2. Orbital and Design Parameters of the Tethered Centrifuge

Orbital Parameters

AIUtude 350km

Inclination

Reference Exospheric

Temperatature

Initial Eccentriclt_/

Sun Position

Design Parameters

Tether Length

Tether Diameter

28.5 deg

900 OK

0

Summer Solstice

lkm

1.7

Tether Thermal Expansion -2.5x10 -6 °K-I

Coemclent

Kevlar Yield Strength 2500 MPa

Tether Linear Density

Capsule Mass (mr)

Delta II Stage Mass (m2)

Inertial Spin Velocity for 1-g

Acceleration at Capsule

Longitudinal Wave Speed

Transverse Wave Speed

(Tension = 1960 I_

Tether Axlal Stiffness (EA)

3.47 kg/km

203.7 I¢_

872.7 kg

1.05 rpm

13689 m[s

752 m/s

47311N

ground-based tests have demonstrated to be best suited for human physiology

[16]. Rotational velocities above 6 rpm produce canal sickness, while gravity lev-

els below 0.3 g impair mobility. Centrifuges with a radius smaller than 8 m are

unable to provide an environment suitable for human habitation.

Figure 6(d) depicts the inertial spin velocity. The average spin velocity relative

to the rotating frame of O = 95fl is very far from the value O = 1.87fl at which

the out-of-plane .motion becomes unstable [17]. The low-frequency variation

of the spin rate 0 is related to the thermal stretch of the tether. The effect of

the terminator's crossings at t = 3000 sec and t = 5200 sec is readily seen in

Fig. 6(a). A decrease in tether temperature [Fig. 6(e)] produces an increase in

tether length and a small decrease in rotational speed. Conversely, a temperature

increase produces a small increase of rotational speed.

An interesting result of the centrifuge with its spin axis initially perpendicular

to the orbital plane is as follows: the relative angular momentum vector H (i.e.

about the centrifuge's CM) precesses in inertial space. The J_, gravity torque,

which affects both the orbital and the relative angular momenta, is responsible
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Dynamic Response during the Steady-Spin Phase of a Centrifuge with the Spin

Axis initially Perpendicular to the Orbital Plane.

for this phenomerion. As a result, the nutation angle of H with respect to its ini-

tial orientation increases slowly during the simulation time span as shov, n in

Fig. 6(f). This slow drift of about 5 millideg per orbit is responsible for the _.low
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increase of the lateral acceleration component shown in Fig. 6(c). The accelera-
tion level, however, is negligible even after a large number of orbits. A simula-
tion of 20 orbits has shown a linear increase of the lateral acceleration up to a

level of 30 nanog after 20 orbits.
Conversely, for a centrifuge with the spin axis initially aligned with the orbital

velocity vector, the vector H precesses but the maximum amplitude of the nuta-
tion angle does not increase with time as shown in Fig. 8(a). Consequently, the
amplitude of the lateral acceleration component, shown in Fig. 8(d), is constant.
Its magnitude, however, is bigger (but still negligible) than in the previous case
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[compare to Fig. 6(c)] because the lateral acceleration is periodically affected by

air drag when the spin axis is initially aligned with the flight direction. Every

quarter of an orbit the centrifuge orientation changes from edge-on to head-on

with respect to the ram direction. The nonsymmetric behavior of the lateral ac-

celeration is related to the diurnal bulge of the atmosphere whereby the air

0 1 2 3 4

Rotational Rate (rpm)

FIG. 7.

5 6 7

Artificial Gravity Envelope lAdapted from Ref. [16]). "'TC'" is the Curve for a

l-kin-long Tethered Centrifuge.
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density is greater on the sunny side of the orbit. The other components of the
acceleration shown in Figs. 8(b) and 8(c), are similar to the previous case. Spe-
cifically, the fluctuations of the radial component about the 1-g level are
smaller than 0.8 millig.

The analytical treatment of this precession phenomenon is quite complex and

beyond the scope of this paper.

Spin-Up Phase

The steady-rotation condition is reached in 2000 s as shown in Fig. 9(a). The

first rotation takes almost 150 seconds to complete. In the same period of time
the instantaneous thrust, shown in Fig. 9(b), grows from zero to 21.5 N. The
total propellant consumption is 70 kg for a cold gas system with a specific
impulse of 55 s, but only 13 kg if a bipropellant hydrazine propulsion is adopted.

Figure 9(c) shows that a 1-g level of radial apparent acceleration is readily at-
tained by the centrifuge.

De-Spin Phase

The system takes 2000 s to reach the quiescent condition [Fig. 10(a)]. The
thrusters have no control over the out-of-plane motion, as shown in Fig. t0(b).
The thrust level was limited to 40 N, as shown in Fig. 10(c), in this simulation.

Once the maneuver is over, the out-of-plane motion changes from a rotation
with a spin period of 57.74 s to a libration forced by the J2-term with an orbital

period of 5492 s. The tension in the tether changes from 1960 N (due almost en-
tirely to the centrifugal force) to 0.13 N due to the gravity gradient. Figure 10(d)

shows the radial apparent acceleration, which goes to zero following the varia-
tion of tether tension. Since the control law for de-spin is different from the
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spin-up control law, the propellant consumption is now equal to l]0 kg for a cold
gas system but only 20 kg for a bipropellant hydrazine propulsion system.

VIII. Conclusions

The major conclusions on the dynamics and stability of the 1-kin space cen-
trifuge are as follows: (l) the analysis of the tether two-dimensional transverse
vibrations shows that these oscillations are stable for any practical values of the
system parameters; (2) the dynamic environment provided by the tethered cen-
trifuge is in the optimum comfort zone for humans subjected to artificial gravity
conditions and the acceleration fluctuations about the 1-g level are smaller than
0.8 mg; (3) because of the J2 component of the gravity field, the relative angular
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momentum vector precesses and drifts very slowly for a centrifuge with the spin

axis initially perpendicular to the orbital plane, conversely the angular momen-

tum precesses without drifting for a centrifuge with the spin axis initially paral-

lel to the orbital plane; and (4) by adopting a proportional-derivative control law

for the thrusters, it is possible to spin-up and de-spin the centrifuge in less than

one orbit with a moderate propellant consumption.
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5.0 TWO-DIMENSIONAL STRUCTURES WITH TETHERS

While the gravity gradient provides positive tension along the vertical direction of

Earth-pointing long tethers in space, stabilizing forces in the horizontal direction can be

produced by either differential air drag or electrodynamic forces. An alternative to the

Earth oriented large structures is a centrifugally stabilized circular structure made of long

tethers which form the perimeter of the circle and the spokes. In either case, the final goal

is the stabilization of two-dimensional large structures in LEO which make use of long

tethers as structural elements.

The work carried out during this contract was the continuation of the investigation

conducted under contract NAS8-35497 from NASA/MSFC in which issues of stability of

two-dimensional tethered structures had been investigated. The results of that research are

best summarized in the following reference: E.C. Lorenzini, "Novel-Connected Two-

Dimensional Structures for Low Earth Orbits," The Journal of the Astronautical Sciences,

Vol. 36, No. 4, pp. 389-405, 1988.

Under the present contract, the research on two-dimensional structures focused on the

development of planar phased arrays with extremely high gains.

The following paper focuses on the design and system requirements for spaceborne

phased-array antennas for high power transmission of electromagnetic waves in the ULF

(< 3 Hz) and VLF (3-30 kHz) frequency bands. The structures proposed in this paper are

not only Earth-oriented and stabilized by electrodynamic forces but also centrifugally-

stabilized with a spin axis perpendicular to the orbital plane.
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Abstract

A possible application of long conducting tethers in

Earth orbit and of spaceborne, two-dimensional tethered

structures is to radio communications in a frequency band

that extends upwards from about one Hertz to several

tens kilohertz. One-dimensional electrodynamic tethers of

the self-powered, drag-compensated variety have the

potential to function as effective transmitting antennas at

the lower end of this band (ULF frequencies}, while two-

dimensional tethered structures could make it possible to

mechanize large-size VLF phased arrays of electric or

magnetic dipoles with a gain in excess of 30 dB.

Substantial R&D activity is still necessary (involving

Shuttle-borne, satellite-borne and rocket-borne experi-

ments) to prove the feasibility of these concepts and to

provide experimental data, lacking at this time, on which

to base the engineering design of these orbiting systems.

1. Single-dimensional tethers

A self-powered, drag-compensated, vertical electro-

dynamic tether, functioning as a "phantom loop" mag-

netic-dipole antenna (Grossi, 1987) with a moment in

excess of 101_ A.m 2 and with a mass smaller than 10 tons

could transmit at ULF (~ 1 Hz) call-up messages and

low-data-rate communications to receiving terminals

deeply submerged in sea water. The technology of

spaceborne tethers, inclusive of the plasma contactors

necessary to bridge the tether's terminations to the

ionosphere is well on hand at this time and will be

experimentally verified in the early '90s. Some of the

basic system parameters are given in Table I.

Should the technology of room-temperature superconduc-

tivityadvance to the point that we could make practical

use of it in spaceborne systems, there would be a

significantmass reduction. A tether system could be

configured with the design parameters given in Table II.

A first experiment on the electromagnetic radiative

properties of a vertical electrodynamic tether will be

carried out on the occasion of the TSS-1 flight, scheduled

for early 1991. A ULF communications system of

practical significance, based on the results of this experi-

ment, could be operational a few years later, possibly by

1995.

2. Two-dimensional Tethered Structures

Even more impressive are the possibilities offered

by two-dimensional tethered structures, that could func-

tion as spaceborne reticles made of kevlar wires, capable
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]'able II. Spaceborne ULF Transmitter Using an Electro-

dynamic Tether Made of Room-Temperature

Superconducting Material

of supporting an array of dipoles of unprecedented

radiation intensity and gain. These large-size structures

(circles, ellipses, rectangles, squares, triangles, etc.) can be

magnetically stiffened in a plane perpendicular to the

geomagnetic field (Lorenzini, 1984) or centrifugally stiff-

ened. Figures 1, 2 and 3 provide examples of stiffening

by electrodynamic forces, while in Figure 4, a centrifu-

gally-stiffened configuration is depicted. The large-size,

Cop_.rlghl __ Amcrl_:an Inslilule or ,Aeronautics and

A,tronault¢_, ln_:., 1_89, A.II right_ reserved 1



magnetically-stiffened rectangular array of Figure 5, with

dimensions 50 km x 150 kin, containing 1000 loops

(elementary magnetic dipoles) could provide in the ELF

band (at about 75 Hz) a magnetic moment of 10 n A.m 2,
with a total mass smaller than 50 tons.

The VLF band, that extends from 3 KHz to 30

KHz, is where the advantages of tethered structures as

electromagnetic radiators in Earth orbit are most striking.

At 9 KHz, the 30 km diameter, circular array of Figure 4,

rotating at 2.75 rph in a 750 km circular orbit, coplanar

with the orbit, could provide a 2 ° × 20 beamwidth and

radiate into the ionosphere a power level of almost one

Megawatt.

This beam, directed downward along the vertical,

and kept in that orientation by circular rotation of the

phase distribution among the array elements (while the

array rotates in its orbital motion} could use hundreds of

loops, as indicated in Table Ill.

r 1
/FRFeQUENCh' _ DL_M.ETEIt O_: wilY.EL NUMBER OF ELEMENTARY LOOPS

KRZ I It? KM 72_,'360 RIG _:)OPS, D_A = 200 M EACH

14 _ ,, 213 KM ?20 '36C,'180 LOOPS. DL_ = 152 M EACH

]
20 _ 14 KM 720 '3f_ 186 LOOPS DIA = 136 M !rAC_]

Tabie Iil. Array Size (Geometry and Number of Loops}

a', Three Frequencies 2:' x 2 Beam

LL
'_i == i<_ ,'_

,06 1_1_ I_ I _Z 0_ 2O3 2?re I I 4SSlI_ -_

Figure 1. Example of rectangular structure stabilized

by electrodynamic forces (tethers are all in

aluminum and have the same diameter}.

The physical and electromagnetic properties of

earl: loop are illustrated in Table IV. The directivity and

the gain that are achievable with the 2 _ x T j array that
we have discussed thus far are illustrated in Table V.

Such an array would make it possible to achieve a Signal-

to-Noise ratio of 0 dB (threshold) in 1 Hz bandwidth, at a

distance of 5,000 km from the ionospheric "exit point" in

the worst conditions of propagation and noise level, _s

encountered is Summer daytime. This result is of

substantial significance in strategic communications.

ca_-

(2

1

l / ! ',

Figure 2. Example of pseudo-elliptical loop also

electrodynamicall.v stabilized.

rc _ C_C_.t s
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Figure 3. Two-dimensional tethered structure where

shape stability is aga:n pm_ided b_ electrody-
namic forces,
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narrow width high-gain main lobe is pro-

duced Th_5 _obe is kept always aligned

wflh the verbcal, while wheel rolales in

or bl_al plane

Oenlr,tugal stiffening is produced by

wheel rotation

Mass o1 overall o_b_tng system 50 tons

Radial Range covered 5 megameters on

the earth surface from the vertical lot

the e m waves exit point (al the bollom

of ionosphere) ]

Figure 4. Spaceborne VLF transmitter and antenna for
communications at 9 KHz,

The 30-km array (a fiat ring with OD (outer

diameter) = 30 km and ID (inner diameter} = 10 kin)

could be mechanized with 18 radial spokes and 10

loops/spoke, the total mass being about 100 tons. When
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Figure 5. Spaceborne ELF transmitter and antenna for
communications at 75 Hz.

working at 20 KHz, the array diameter could be limited

to 15 km OD and 5 km ID, with the same number of

spokes and of loops/spoke as before. In this case the

mass could be kept limited to 50 tons.

By assuming to generate the primary power with a

few, say three, power plants (such as SP-300 fission

reactors), we have to account for distribution losses of the

DC power to the single radiators, each one equipped with

its VLF transmitter. The power losses in the distribution

system are indicated in Table VI. It can be seen that,

for each of the four cases that we have considered, these

losses are affordable.

Concerning deployment, it is not an easy task to

erect in orbit a large-size, two-dimenslonal structure.
However, schemes that are feasible and practical can be

worked out, requiring minimal EVA activity or no EVA

activity at all.

3. Conclusions and Recommendations

There are still several technical issues that need

serious study. To name just a few: (a) investigation of

possible non-linear effects in the ionosphere, due to the

unusually high level of radiated power; (b) establishing a

rigorous theory of beam-forming in a magnetoionic

medium; (c) perform, in preliminary experiments with

rockets and satellites, the space-to-ground channel charac-

terization of the propagation paths, inclusive of determi-

nation of Doppler spread and multipath spread, in order

to establi._h the ultimate communication capabilities of

these paths.

Finally, the single issue of the uppermost impor-

tance, that will decide about the fate of spaceborne

tethered structures as radiators of e.m. waves, and make

them acceptable to the communications community, if

satisfactory technical solutions are found, is cost. Sim-

plicity, low mass, easy deployability are the criteria that

system designers must keep prominently under consider-

ation.
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FIRST CASE

LOSSES IN FEED LINES
ALONG RADIAL SPOKES

ONLY

TOTAL LOSSES IN

DISTRIBUTION
SYSTEM

20 KHz Array of 720 loops, 15 km wheel
72 spokes; 10 loops/spoke; spoke length 5 km;

feedline resistance ~ 3 ohm; feed voltage 1.2 KV;
spoke current 10 A; 24 spokes for each SP-300

generator; 12.5 KW distributed by each spoke;
1.054 KW to each loop

21 KW 27 KW

SECOND CASE 20 KHz Array of 180 loops, 15 km wheel

18 spokes; I0 loops/spoke; spoke length 5 kin;

feedline resistance ~ 3 ohm; feed voltage 1.2 KV;

spoke current 42 A; 6 spokes for each SP-300

generator; 50 KW distributedby each spoke; 5

KW to each loop

91 KW 117 KW

THIRD CASE 9 KHz Array of 720 loops, 30 km wheel
72 spokes; 10 loops/spoke, spoke length 10 kin;

feedline resistance ~ 2 ohm; feed voltage 1.2 KV;
spoke current I0 A; 24 spokes for each SP-300

generator; 12.5 KW distributed by each spoke;
1.054 KW to each loop

15 KW 19 KW

FOURTtl CASE 9 KHz Array of 180 loop% 30 km wheel.
18 spokes; 10 Ioops/spokel spoke length 10 km;
feedline resistance ~ 2 ohm; feed voltage 1,2 KV;

spoke current 42 A; 6 spokes for each $1'-300
generator; 50 KW distributed by each spoke; 5

EW to each loop

63 KW 81 KW

Table VI

Examples of Computation of Power Loss in Distribution System
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6.0 TETHERED HIGH-GAIN ANTENNAS

Conductive Earth oriented tethers can function as high directivity transmitting and/or

receiving antennas. The proposed transmitting antennas are traveling wave antennas, i.e.,

the antennas are non-resonant, terminated by the characteristic impedance.

The three following papers treat the transmitting and receiving antennas as follows:

The first is a white paper which proposes a 4-kin vertical, downward tether to

transmit e.m. waves in the ULF (< 3 Hz) band and altcrnuti,,clv in the VLF (3-30 kHz)

band. The current in the antenna is 12 A for the ULF tran,,mi,,_,ion at 0.25 Hz and 5 A for

the VLF transmission at 9 kHz. A second, upward tether is also proposed for

transforming orbital energy into electrical energy in order tu reg.barge the batteries for a few

times before the orbit decays. Signal-to-noise ratios on the ground are estimated at +6.5

dB and +22.5 dB respectively.

The second paper addresses the propagation of ELF (30-3(X) Hz) and VLF (3-30 kHz)

waves in the ionosphere with particular enlphasis on the latter type of waves also called the

whistlers. The far field radiation pattern is computed and conditions at the crossing of the

E-layer of the ionosphere are evaluated.

The third paper proposes a set of two vertically oriented, traveling-wave antennas

orbiting on the same orbit but separated by a distance to provide a high-directivity,

narrowly-focused radiation pattern. The two antennas, orbiting at an altitude of 10,000 km

are proposed as receiving antennas for radioastronomy in the frequency band 1-30 MHz.
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An electrodynamic experiment on the generation and radiation of e.m. waves

from ULF to VLF frequencies (the specific band of interest extends from about 0.25

Hz to about 30 kHz) can be conducted by taking advantage of one of the future Delta

II flights. The proposed payload has a mass of-- 794 lb, well within the weight

margin of 950 lb available for secondary payloads on a Delta II/GPS flight. The

payload consists of two SEDS-type deployers, each one to deploy a 4-km-long

dielectric-coated copper wire with an overall diameter of 1 mm. The 2x4-km

conducting wires are equipped with plasma contactors, Silver-Zinc batteries,

modulator, transmitter, DC/AC-AC/DC static converter, programmer/sequencer,

etc.

In the ULF mode of operation (carrier frequency of the order of one hertz) the

self-powered antenna can draw from the ionosphere a current of 12 A dc, under

the drive of a maximum electromotive force of 2.1 kV provided by the VxBo/

mechanism, where V is the orbital velocity, B the intensity of the Earth magnetic

field, and 1 is the antenna's length. At the lower end of the frequency band, the

unidirectional current will be modulated by means of a controlled solid-state

switch and pulse shaper, from a frequency of 0.25 Hz up to a few Hertz. Existing

ground-based receiving stations (e.g. those established by the Smithsonian

Astrophysical Observatory and the University of Genova, Italy for the TSS-1

program), as well as existing Magnetic Observatories, will provide a world wide

network of receiving terminals to collect and record the signals on the ground.

Based on a phantom-loop radiation model, a signal-to-noise ratio (SNR) of +

6.5 dB in 10 -2 Hz bandwidth is expected at the Earth surface, along the ground

track of the orbiting system, for frequencies in the ULF band. This is 27.5 dB

better than the SNR of-21 dB that the phantom loop model predicts, under a

comparable set of circumstances, for the TSS-1 electromagnetic emissions.

In the ELF mode (30 Hz-60 Hz in our case) and in the VLF mode (3 kHz - 30

kHz) one of the two 4-kin tethers is used to generate DC electric power for

supplementing the on-board batteries and the other is used as a travelling wave

antenna. SNR ratios of +20 to +30 dB are expected on the Earth surface in the

VLF band, in a 1 Hz bandwidth.

Optionally, experiments could also be carried out on the potential use of the

spaceborne travelling wave antenna as a receiving antenna for scientific uses

such as ionospheric physics and low frequency (LF) radioastronomy.



Introduction

The spaceborne tether concept was first proposed (Grossi, 1973) as a

long-wire orbiting antenna usable at frequencies as low as a fraction of 1

Hz. In the area of magnetospheric physics, the usefulness of the tether was

identified to reside in the generation of artificial micropulsations of the PC-

1 class, and of neighboring classes, thus providing a useful tool to

understand several puzzling aspects of this natural phenomenon. In the

area of technological applications, the tether was proposed as a generator

and radiator of electromagnetic waves in the ULF band (unofficially defined

as the band of frequencies f < 30 Hz), in the low-ELF band (the ELF band is

officially defined 30 Hz < f< 300 Hz), and in the VLF band (officially defined

3 kHz < f< 30 kHz).

All these bands are of interest to strategic communications. At hertz

and subhertz frequencies, the tether could operate as an orbiting terminal

capable of transmitting "call-up" bell-ringing signals to deeply submerged

receivers. At low-ELF frequencies, namely near the upper end of the

allowable band of tether emissions that extends from dc to about 60 Hz

(Barnett and Olbert, 1986), the tether could operate as an orbiting facility for

the transmission of actual information-carrying messages, thus

complementing existing ground-based ELF transmitters. At VLF we

expect good efficiency in operating the tether as a travelling-wave radiator

in the band 3 kHz-to-30 kHz, thus complementing the airborne TACAMO.

The proposed SEDS/Delta-II experiment is expected to provide

conclusive evidence about the feasibility of using an electrodynamic tether

as a generator/radiator of e.m. waves at frequencies from a fraction of 1 Hz

up to 30 kHz. The phantom loop model (Grossi, 1987), that is valid and

reasonably accurate at hertz and subhertz frequencies, is indicative of

system performance as illustrated in Table I-A.
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We have also included provisions in the payload design to perform

transmission experiments in the low-ELF band and in the VLF band, by

operating the 4-kin antenna as a travelling wave radiator. Table I-B

provides a first-cut performance appraisal at VLF. We could also add

(optionally) e.m. wave receivers that could perform a scientifically valuable

detection of naturally occuring ionospheric e.m. waves, especially

interesting, should the orbit of SEDS/Delta II include polar regions. In

principle, the Delta II satellite could orbit over these regions. Auroral e.m.

wave emissions and aurora currents travelling downwards along the lines

of force of the geomagnetic field would become detectable because the

vertical long-wire antenna would be roughly tangent to these lines.

By applying under comparable circumstances, within the frequency

range for which it is valid, the phantom loop model to the TSS-1 mission (20

km length, 0.2 A tether current, and 4 kV e.m.f.), the signal-to-noise ratio

(SNR) at the Earth surface is estimated at -21 dB, hence 27.5 dB worse than

the SNR expected for the SEDS/Delta-II tether. This is due to the fact that

(because of very low tether current) the magnetic moment of the TSS-1

phantom loop is a factor of 24 smaller than the moment, shown in Table I,

of the SEDS/Delta-II electrodynamic tether (SNR = +6.5 dB in this case).



Table I-k $EDS/Delta.II Elecimdyaamic Tether Specifications

for ULF Radiation Experimen_

Tether Length

Electromotive Force

Tether Diameter

Tether Ohmic Resistance

Tether Current

Current Switching Frequency

Area of the Phantom Loop

Magnetic Moment of Phantom Loop

Signal Intensity at the Earth

Surface, Along Track

Noise Density at 0.25 Hz

Noise in 10 -2 Hz Bandwidth

Signal-to-Noise Ratio in 10 -2
Hz Bandwidth

2×4 km

2.1 kVolt

1ram

2x88 ohm

12 A

0.25 Hz

2.88x 109 m 2

3.46x10 lo A m 2

+ 36.5 dB wrt l_V/m

÷ 50 dB wrt 1 _V/mHz-1/2

+ 30 dB wrt 1 _V/m

+ 6.5 dB

4



Table I-B, SEDS/Delta II Elecirodynamic Tether Specifications

for VLF Radiation Experiments

(one 4-km tether for DC power generation;

one 4-kin tether for ea_ wave radiation)

DC Electric Power Generation

Tether Length
Tether Orbital Height
Electromotive Force (emf)
Wire Diameter

Tether Ohmic Resistance
Tether Current

Gross Primary Power Generated

Primary Power Delivered to Payload

4km
400 km
1.05 kV

1 mm (or 1.7 rnm)
88 ohm (or 28 ohm)
6 A (or 20 A)
6.3 kW (or 21 kW)
3 kW (or 10 kW)

Travelling Wave Antenna at VLF

1st case - at 9 kHz

Tether Length

Wavelength in Ionosphere, Xiono

Antenna Length in Wavelengths
Radiation Resistance
Overall Resistance
Antenna Current

Intensity of Electric Field
on the Earth Surface (in

antenna main lobe, 10 o

away from vertical)

Signal-to-Noise Ratio (in 1 Hz
bandwidth)

Required Primary Power
Duty Cycle

4km

3.33 km

1.2 kiono
130 ohm
418 ohm
4.89 A

=150 _v/m

+ 22.5 dB
10 kW

30% (or 100%)

2nd case - at 30 ]d-Iz

Required Primary Power
Tether Length

Wavelength in Ionosphere, _-iono

Antenna Length in Wavelengths
Radiation Resistance
Overall Resistance
Antenna Current

Intensity of Electric Field on the
Earth Surface (in antenna main

lobe, 10 o away from vertical)

Signal-to-Noise Ratio (in 1 Hz
bandwidth)

10 kW
4km

lkm

4 _iono
210 ohm
500 ohm
4.47 A

= 450 _v/m

+32dB
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Technical Discussion

General

There are several factors that make it advisable to perform experiments

on electrodynamic tethers by taking advantage of the availability of SEDS

(Carroll 1987; Harrison et al., 1989) and of the Delta-II flight opportunities

(Garvey and Marin, 1989). The most important factor is the long delay that,

for various causes, the TSS-1 mission has experienced and is still

experiencing. Should we wait for the outcome of the planned sequence of

TSS flights to ascertain the feasibility of a tether as generator/radiator of

e.m. waves at ULF, low-ELF and VLF frequencies, we would not have the

needed answers on hands before the end of the '90s. The situation would be

indeed quite discouraging, should not be for the fact that there is a SEDS

system, and there are flight opportunities provided by the Delta-II launch

vehicle.

This White Paper advocates that an experiment to prove the feasibility of

the electrodynamic tether as a generator/radiator from ULF to VLF

frequencies be included in the SEDS/Delta-II demonstration program.

During the preparation of this document, we have performed a first-cut

engineering definition of the required payload for demonstrating its

suitability to carry out the required measurements while remaining within

the mass, size, and cost constraints typical of a SEDS/Delta-II flight

mission.

Description of the Proposed Payload

The simplified block diagram of Figure 1 shows the principal elements

of the proposed payload. They are:

(1) 2 Teflon-coated, conducting tethers, 4 km long, with 2 SEDS

deployers; the electrical resistance of each 4-kin tether is 88 ohm for

the first mission (or in alternative, 28 ohm);
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(2) 3 plasma contactors, complete with power supply and auxiliary

units, each rated at 20 A, capable of providing a low-resistance

bridge between each end of the tether and the ionosphere, and

between the platform and the ionosphere;

(3) 1 solid state switch operated by a control unit; switching rate from

0.25 Hz to 2.5 Hz; inclusive of a pulse shaper;

(4) 1 switch control unit;

(5) 1 programmer/sequencer;

(6) 1 shunt resistance, 504 ohm, 2 kilowatt;

(7) Additional Silver-Zincbatterieson the Delta II second stage;

(8) DC/AC static inverter (high voltage input);

(9) AC/DC converters (low voltage input);

(10) E.M. wave receivers, low-ELF band and VLF band, using the

conducting tether as a travelling wave receiving antenna (optional

items).

Figure 2 shows a possible location forthe proposed payload on board the

Delta-If. The required space is a fraction of the available toroidal volume

(with mean radius 33", width 16" and height 20") all around the guidance

section of the Delta-If. The SEDS deployer is accommodated in the shaded

area of Fig. 2.

In the ULF mode of operation, the self-powered antenna can draw from

the ionosphere a current of 12 A dc, under the drive of a maximum

electromotive force of 2.1 kV provided by the VxBo/mechanism, where V is

the orbital velocity, B the intensity of the Earth magnetic field, and I is the

antenna's length. At ULF, the current will be modulated by means of a

controlled solid-state switch, equipped with a pulse shaper, from a

frequency of 0.25 Hz up to approximately 2.5 Hz.
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Existing ground-based receiving stations (e.g. those established by the

Smithsonian Astrophysical Observatory and by the University of Genova,

Italy, for the TSS-1 program), as well as existing Magnetic Observatories,

will provide a world-wide network of receiving terminals for collecting and

recording the signals generated by the spaceborne system.

Based on a phantom-loop radiation model, a signal-to-noise ratio of + 6.5

clB in 10 -2 Hz bandwidth is expected at the Earth surface, along the ground

track of the orbiting system, for ULF frequencies.

In the VLF mode, one of the two 4-km tethers is used to generate DC

electric power and the other tether is used as a travelling wave

transmitting antenna, in the frequency band 3 kHz - 30 kHz.

This requires that the high-voltage emf due to the tether (1.05 kilovolt

DC) be inverted by a static inverter into a low-voltage AC, that becomes easy

to transform into the wanted values (by simple transformers) and converted

ultimately into the DC voltages required by the various power supplies. The

tether DC electric power generator will supplement the batteries, will

trickle-charge them and stay connected with them, in feeding the on-board

loads. We have worked out two cases for the DC generator:

(a) a 88 ohm tether, capable of feeding the payload with a 30% duty cycle.

(b) a 28 ohm tether, capable of feeding 100% of the time the same

payload.

According to the SEDS deployer's manufacturer (Tether Applications,

Inc.) a 4-kin × l-ram diameter tether with a resistance of 88 ohm can be

accommodated into the deployer canister without any substantial

modification to the hardware.

This tether will be used for the first mission. For future missions the

tether resistance could be reduced to 28 ohm by using a 1.7 mm-diameter

Copper wire. In this case the primary power generated by the upper tether

would be 21 kW, 10 kW of which are delivered to the load (batteries or VLF
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transmitter) with a 100% duty cycle. In this latter case, the SEDS deployer

must be enlarged.

In the ELF mode, we will have again one tether functioning as a DC

power generator and the other one as a travelling wave antenna. Because

the 4 km antenna is now electrically short (for instance at 60 Hz, the

wavelength in the ionosphere is 50 km by night and 5 km by day, so that

even during the night, the antenna length is < 1 lambda), we would expect a

much poorer performance at ELF than at VLF. However, it costs very little

to add the ELF band to the VLF system.

An interesting possibility is to use the conducting tether as a long-wire

receiving antenna. Should the SEDS/Delta II be launched in a polar, or

quasi-polar orbit, the tether would become nearly tangent to the lines of

force of the geomagnetic field in that portion of the orbit that overflies the

polar regions. Auroral emissions of e.m. waves and aurora currents (the

latter being nearly parallel to the conducting wire), could become

detectable. To perform an experiment on the feasibility of these

measurements, and, more in general, to observe with the tether field-

aligned electrodynamic phenomena, we need to add to the SEDS/Delta II

payload, receivers to cover the following frequency bands: ULF (< 30 Hz),

ELF (30 Hz to 300 Hz), VF (300 Hz to 3 kHz), VLF (3 kHz to 30 kHz), LF (30

kHz to 300 kHz), MF (300 kHz to 3 MHz) and HF (3 MHz to 30 MHz). We

expect that a grand total of three receivers will be able to cover the seven

frequency bands above. Off-the-shelf units exist, with performance

specifications close to what we need, so that no major developmental work

is required. As far as size, mass and primary power is concerned, we

expect that each one of the three receiver units will have dimensions 3" x 2"

x 10", 1 kg mass, and 2 watts primary power requirement.

The total mass of the payload is 360 kg (_ 794 lb). This includes the

tether masses, three plasma contactors inclusive of their power supplies

and auxiliary units, 3 receivers, two Marman clamps, and two additional

250 Ah Silver-Zinc batteries on the Delta II which enable a mission

duration of 4 days. Two of the three plasma contactors are installed on the

end masses of the SEDS tether. One is attached to the platform itself. The
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primary power requirement for the payload at ULF is 28 volt dc, 5.3 ampere,

146 watt and 10 kW at VLF. Use will be made of the Delta-II telemetry

channels available to payloads. This use, however, will be very limited

because the scientific data from our experiment are collected and recorded

by ULF/ELF/VLF receiving stations on the Earth surface, and not onboard

the platform.

Orbital Flight Parameters

The parameters for the orbital flight of the proposed electrodynamic

tether experiment could be similar to the parameters of the first

SEDS/Delta-II flight (DeLoach et al., 1990), presently scheduled for

December 1992, for the measurement of the dynamic properties of the SEDS

tether.

We estimate that by adding 260 Ib of Silver-Zincbatteries (thisfigureis

already included in the totalmass of 790 Ib)to the Delta's second stage the

mission can last as long as 4 days. The orbitaldecay will be approximately

2.5 kin/orbit during electrodynamic operations.

A nominal inclinationof 370 and an orbitalaltitudegreater than 400 kln

with a circular or a low eccentricity orbit are acceptable. The prior

knowledge of the orbital parameters is a particularly important factor in

this case because we must establish the precise location of the receiving

siteson the Earth surface as a function of the orbitalparameters. We must

make sure that the orbiting system fliesas close as possible over each

receiving site. In later flights,we could relax this specificationand explore

signal detectabilityat substantial distances from the ground track. For the

first electrodynamic mission, however, the receiving stations should be

strictlylocated along the ground track.

Ground-Based Data Collection

Several instrumented sites at various locations on the Earth surface

will be used for data collectionand recording, equipped with the same

instrumentation that has been developed for the TSS-1 electrodynamic

mission. The existing instrumentation is mobile and can be relocated at
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sites that are on the ground track of the proposed SEDS/Delta-II mission.

This instrumentation consists of the following equipment:

(a) Receiving/recording system developed for TSS-I by Rice University

under a subcontract from Smithsonian Astrophysical Observatory. This

instrumentation, complete with data recorders, uses the following sensors:

- One set of 3-axis magnetic field sensor BF-4 (a coil magnetometer) for the

band 0.3 Hz to 500 Hz;

- Two sets of 3-axis magnetic field sensor BF-6 (also a coil magnetometer)

for the band 100 Hz to 100 kHz.

(b) Receiving/recording system developed for TSS-1 by University of

Genova, Italy, using sensors that were loaned to University of Genova by US

Navy, NUSC, New London, CT (NUSC sensors are encapsulated in Bentos

glass spheres suitable for underwater deployment). The sensors are:

- Two sets of 3-axis induction coil magnetometer for the band 0.01 Hz to 100

Hz (Gritzke and Johnson, 1982);

- One set of Varian, optically pumped, cesium vapour magnetometer.

Another magnetometer will be probably added to the sensors that the

University of Genova borrowed from the US Navy: a SQUID, multi-axis

system that the University of Genova plans to procure in time for the TSS-1

flight.

Given the planned orbital parameters, the schedule of data collection at

each of the ground-based sites can be easily formulated with all necessary

time accuracy. The number of channels that will be recorded at each site

are a function of the number of sensors and of the number of axial

components for each sensor. In addition, a channel will be devoted to

station's identification and time information consisting of Epoch and of 1-

second time marks. Pertinent telemetry data from SEDS/Delta-II will be

collected, processed, and formatted by the on-board computer (Rupp, 1988).
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Data will then be transmitted to the ground-based telemetry station(s),

assigned to the flight, via the Second Stage telemetry link.

Further Implications of Proposed Expeximent

The electrodynamic drag associated with DC power generation and

with e. m. wave generation and radiation at ULF with a 50% duty cycle

produces an orbital decay estimated at 2.5 km per orbit. This orbital decay,

while tolerable for the proposed experiment, could not be acceptable for an

operational system. The orbital decay, however, can be eliminated

completely by removing the DC power generation mode and by eliminating

the unidirectionality of tether current (unidirectionality is now present

when the tether operates in the ULF mode; it is also necessarily present

when generating DC electric power).

We expect the tether to be trackable from the ground (Garvey and

Marin, 1989) and its dynamic behavior will, therefore, provide data for

model validation.

Br f of the Proposed o ,am

A program of 2.5 year is presently envisaged for the development,

manufacturing, testing, and integration of the flight hardware. The

Principal Investigator will be Dr. Mario D. Grossi, SAO, Radio &

Geoastronomy Division. Co-Investigators in the program will be Dr. Enrico

C. Lorenzini and Dr. Mario L. Cosmo, both from SAO.

The program consists of: (1) an instrumentation hardware development

effort to be performed by SAO's Central Engineering Department; and (2)

an analytical effort. Specifically, the hardware development effort will

include fabrication, integration, and testing. The analytical effort will

include: (a) a tether dynamics analysis to verify that a current < 20A

flowing in a single 4 km SEDS tether, or a current of 12 A flowing in the 2x4

km tether does not produce unacceptable dynamic instabilities; (b) an

analysis of tether-induced e.m. wave emissions and orbit-to-ground e.m.

wave propagation for a more reliable estimate of the signal-to-noise ratio, at
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the Earth surface, in the frequency band 0.25 Hz to 60 Hz (ULF/Low ELF)

and in the frequency band from 3 kHz to 30 kHz (VLF) (this includes the

study of the conducting tether as a travelling wave antenna at ELF and

VLF); (c) a system analysis in support of the hardware development; (d) a

post-flight data processing and analysis.

Piggy-back accommodations are expected to be provided to the proposed

payload on board a USAF (GPS) Delta-II launch (the 950 lb mass available

to secondary payloads is well above the mass requirement of the proposed

payload) or on any other commercial launch of the Delta II with sufficient

mass margin for secondary payloads.
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Abstract

An orbital emplacement for the transmitter and

the antenna of a communications link at ELF (30 to 300

Hz) and VLF (3 kHz to 30 kHz) to submerged sub-

marines, has been considered since the very inception of

the space age. Only recently, however, space technology

has reached sufficient maturity, for system designers to

undertake serious studies of this link configuration.

The optimistic outlook stems from recent space

technology developments, such as the design and construc-

tion by NASA of long orbiting tethers, and the testing,

onboard Shuttle Orbiter ATLANTIS, scheduled for Sum-

mer 1992, of the first spaceborne 20 km metal wire.

This is known as the Tethered Satellite System #1 (TSS-

1, in short), a space mission that might be possibly

followed by other flights, with tether lengths that could
reach 100 km.

Once deployed at a height of, say, 300 kin, from a

Shuttle Orbiter, or from another suitable platform, a long,

thin tether aligns itself along the local vertical by virtue

of the gradient of the Earth gravity field. If made of

metal, the tether can function as a VED (Vertical Electric

Dipole) transmitting antenna at ELF and VLF.

INTRODUCTION TO SPACEBORNE TETHERS:

AN EMERGING TECHNOLOGY FOR USE IN

RADIOPHYSICS AND RADIOENGINEERING

Sometime in Summer 1992, a new structural

element will make its appearance onboard the Shuttle

Orbiter: a tether consisting of a very long, thin filament

attached, at one end, to the Shuttle, and holding _by the

leash," at the other end, a satellite. Hence the name

"Tethered Satellite System," in short TSS, that has been

given to this joint initiative by NASA and ASI (Italian

Space Agency).

The Summer 1992 tether, a flexible thread with a

diameter of a few millimeters, will have a length of 20

km. However, in later missions, tethers of 100 km length

and even longer are a distinct possibility.

The tether aligns itself with the local vertical and

stays so aligned, by virtue of the vertical gradient of the

Earth gravity field. The tether's orientation, both for

upward and downward deployment from the Shuttle,

deviates only slightly from the local vertical, and its

angular movements about that vertical resemble the

angular movements of a pendulum attached to the
Shuttle. While the Shuttle Orbiter moves in its orbital

flight around the Earth, the tether stays roughly aligned
with the center of the Earth.

In a few years, once that such basic operations as

deployment and retrieval are thoroughly understood, the

tether will find wide-spread use as a flexible structural

element (capable of responding to traction) in large space

structures of one, two, or three dimensions. This use is

similar, in several respects, to the function of ropes in

suspended bridges.

While two-dimensional and three-dimensional teth-

ered structures belong to the long-term future, the

attention of flexible-spacecraft designers will concentrate,

in the short term, on the one-dimensional case. A single

vertical tether, notwithstanding its simplicity, is capable

of performing a variety of functions, among which, if the

tether is made of metal, are the following:

(a) operating as a transmitting antenna (either

resonant, or non-resonant, such as a travelling-wave

radiator), for the effective radiation of electromagnetic

waves. This specific use is the object of this paper.

Tethers can be made of such a length that they radiate

effectively e.m. waves at frequencies as low as ELF and

VLF;

(b) operating as a receiving antenna, again either

resonant or non-resonant;
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(c) performingas a self-poweredantenna,for
radiationof e.m.wavesat ULF(frequenciesof 1 Hzor
lower);

(d)generatingDCelectricenergy,at theexpenses
of theplatform'sorbitalenergy.Theelectromotiveforce
is v × B • t, wherev is theorbitalvelocity(about7.7
km/secfora heightof-380kin),B istheEarthmagnetic
field(about0.3104Weber/m2),andl is thelengthof the
tether(20km). Thecircuitclosureis providedby the
magneto-ionicplasmaof theEarthionosphere,whilethe
contactbetweeneachendof thetetherandtheionosphere
is providedby a "plasma bridge" also known as a

"plasma contactor."

As already told, NASA and ASI will launch in

orbit, in Summer 1992 the TSS-1 mission, that uses a 20

km-long metal wire. This mission will verify, first of

all, such dynamical issues as the feasibility of safe

deployment and retrieval. In addition, it will perform

experiments on the electrodynamic and electromagnetic

mechanisms (c) and (d) above.

2. RADIATION OF E.M. WAVES FROM A TETHER

IN THE IONOSPHERE TO THE SURFACE OF

THE EARTH, AT ELF AND VLF FREQUENCIES.

2.1 Introductory Remarks

The possibility of transmitting electromagnetic

waves from a Shuttle Orbiter to the surface of the earth

is discussed in a paper by Grossi et al. (1991). The

antenna generating the electromagnetic field consists of a

vertical wire (the tether) which is driven with the Shuttle
as ground. In this Section 2, the electromagnetic aspects

of the problem are examined with available knowledge as

the basis. Because the existing theory of the properties

of the ionosphere and of antennas moving in it are

approximate and complicated, quantitative results can be

obtained only in terms of a relatively simple model.

2.2 The Model

The specific problem to be investigated is the

electromagnetic field on the surface of the earth generated

by currents in a vertical antenna moving in the F-layer of

the ionosphere at a height of 400 km. The length of the

antenna is 4 kin. It is driven at its upper end by a

generator voltage Vo against the space shuttle as a ground.

A schematic diagram is in Fig. 2-1.

The ionosphere is assumed to extend from a height

of 150 km to infinity as a homogeneous medium. It is

given a sharp boundary with air as a simplification of the

gradual layered boundary between 100 and 200 km.

With the shuttle orbiting the earth along a great circle

over the poles, the earth's magnetic field B o _ 0.5 x 10 "4

Tesla is roughly parallel to the vertical antenna over the

poles and perpendicular to it over the equator.

2.3 The Properties Of The Ionosphere

The ionosphere is a plasma consisting of electrons,

protons, and neutral particles. In the F-layer, the

electron and ion densities, r/_ and rh, have the following
values:

Daytime: r/e = r/i = 1.4 x 1012 per m 3, (la)

Nighttime: r/e = r/i = 4 x 10 n per m 3. (lb)

The electric charges are

qe = -e = - 1.6 × 10 -19 Coulombs (2a)

eli = -qe = 1.6 × 10 -19 Coulombs (2b)

(for protons)

The masses are

m_ = 9.1 x 10 -3t kg, (3a)

m, : 1836.3 × 19 m c =

3.17 x 10 -e_ k9 (3b)

The reason for including the factor 19 in (3b) is that the

lower ionosphere consists of a mixture of ions including

N*, N_, O_, with a mean mass of 19 ainu.

The plasma frequencies of the electrons and ions for

daytime are

,)

r/ee" - 44.55 x 1014; tar. = 6.67 x I0 r, (4a)
w_ -- Come

r/'e2 - 1.2779x 10is; wvi = 3.575 x 105 (4b)
wpi -- _ o rrl i

With

B 0 = 0.5 x 10 -4 Tesla, (5)

the gyrofrequencies are

w_ = eB° = 8.8 x 108, (6a)
m e

_B0 = 2.53× 105 (6b)
C_dgi = mi

The effectivecollisionfrequencies-representingthe sum of
the electron- ion and electron-neutral collisions-are

Daytime: u ~ 103; Nighttime: v ~ 4 x 10_ (7)
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2.4 Plasma Waves In The Ionosphere

The ionosphere is a complicated medium for the

propagation of waves generated by oscillating currents at
an angular frequency w in an antenna. The frequencies

of interest for the tether experiment are in the following

ranges:

VLF: 3 kHz < [ < 30 kHz or

1.88 x 104 _< w < 1.88 x 105 , (8a)

ELF: 30 _< / _< 300 Hz or 188.5 _< w < 1885 (8b)

The specific frequencies to be investigated are

f = 9 kHz and 30 kHz; f = 40 Hz. (9)

Three types of waves are examined as follows.

a) Electromagnetic Waves.

The condition for propagating waves of this type is

w >> wgi = 2.53 × 102 (10)

This is satisfied by the entire VLF range (8a), but not by

the entire ELF range (8b). For frequencies that satisfy

(10), the plasma behaves like a homogeneous medium

with the relative effective permittivity and conductivity

given by

ue°w_ (11)_ ¢vp2 oe -- co2 v 2 'e'er = 1 _j2 ___ V2 ; +

when the steady magnetic field B 0 is parallel to the

electric field. These axe modified when B 0 is in the

direction of propagation, as shown in King and Harrison

(1969) (Section 2.12). With (11), the wave number is

. \1/2
--_ =

ki = k° % + w% }

_2 + _,2 (1 + ip)_/2 (12)

where k o = w / c,

p= Ge =
_O_er

and

(13)

(1 + ip) '/2 =/(p) + ig(p). (14)

The quantities [(p) and g(p) axe tabulated over a wide

range in King and Prasad (1986).

When

_,, > o or w; + v; > w_ (15)

the wave number becomes

2 t 1/2

wi
k_ : _, + i-,,_, = k0 1 _:+7 /(p), (16)

_2 + _,:/ 9(p) < _,, (17)

so that propagation with low attenuation in the form

= e-""e '_'' (18)_i, i,

is possible. Alternatively, when

Eer < 0 or u/2 t/2.- < o3_ ,

, )1/2ki = ]_i + iai; Hi = ko wz., " b" 2 1

(19)

g(lpl) (20)

= 1 [([Pt) > _i, (21)
_i ko w2 + b'2

so that the high exponential attenuation makes propaga-

tion impossible.

With w_ = 44.55× 1014 and w 2+v 2 = (1.88x104

to 1.88×105) 2 + 106 = 3.53 x l0 s to 3.53 x 10 m for the

VLF range, a i > /3,- and no propagation is possible.

When the steady magnetic field B0 is not parallel to the

electric field, propagation is likewise generally not possible

except in the Whistler mode considered in the next
section.

b) The Whistler Mode

The existence of the steady earth's magnetic field
B 0 makes propagation in other modes possible. Because

the analytical formulation is extremely complicated, it is

necessary to introduce the simplifying approximation of

neglecting the losses due to collisions and treating the so-

called cold plasma. This has been shown to be a good

approximation of hot plasmas in its general description of

the wave propagation.

A special range of propagation occurs when the

parabolic branch of the dispersion curve is applicable.

This is shown by Denisse and Delcroix (1963, page 95).

The condition underlying propagation in this mode is

w < w_ = 8.88 xl0 _ (22)

This follows from Fig. 8.7 in Denisse and Delcroix (1963).

This is satisfied by the entire VLF range (8a).

The wave number k_ given by Denisse and Delcroix

(1963, p. 98) with w_ << w_ is

- 2.37 x 104ko w-W2 =
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0.749 x 10-4w 1/2 (23)

For .the two frequencies ca = 5.65 x 104 and ca =

1.88 × 105, this gives

54.6 for f = 30 kHz

Specifically with

_1.88 x 10-4 m -1}k° = (6.27 x 10 -4 m -1 (25)

_'1.88 x 10-2 m -1}k; = L 3"42 x 10 -2 rn -I (26)

The effective permittivities are

k? [ 10'
q' = k-_ = 1.2975

(27)

The antenna (tether) length is h = 4 km, so that

h f 12 /or / = 9 kHz

i-, = '[ 21.7 /or/ = 30 kgz
(28)

f 33.4km
or Ao = 1.10 km

or )'i= 1 334
m

t 184 m

c) Alfven Waves

The ELF range (8b) does not satisfy the conditions

for propagation with the Whistler mode. However, it

does satisfy the conditions for propagation with Alfven
waves. This condition is

ca << %i = 2.53 x 102 (29)

For Alfven waves, the phase velocity is the so-called
Alfven velocity given by

Ccaffl'
a = -- = 7.077 x 10-4e = 2.115 x

lO s rn/sec = 211.5 km/sec (30)

When a/c << 1, as in (30), the wave number is well

approximated by

k,=A+i,, ~-_+i__._.
a 2no a3 , .a0 = rncv (31)r}ee2

For the frequency ]" = 40 Hz or w = 251.3 a_ is entirely
negligible so that

ka _ Oa = __w = 1.189 x 10 -3 m-i; ot_ _ O.
a

and

27_

Aa = T = 5.288 km
%

The antenna length h = 4 km corresponds to

h

A-'_ = 0.76 (34)

2.5 The Air-Ionosphere Boundary

The electromagnetic field in the ionosphere gener-
ated by the current in the antenna travels outward with

amplitudes at sufficient distances determined by the far-

field pattern. The field incident on the ionosphere-air

boundary is locally approximately a plane wave which is

reflected and refracted according to Snell's law. Since the

Whistler-mode field is incident from the ionosphere (Re-

gion i, wave number ki) on the air (Region 0, wave

number k0) with kl/k o = 100 when f = 9 kHz, it

experiences total internal reflection when t9 > Oc, , where
the critical angle is

19c, = sin-I k0 = sin -1 (0.01) =
ki

0.01 radian = 0.57 ° (35)

This means that the only field that is transmitted into the

air arrives at the boundary within a small cone with

angle O = 0.57 °. This suffers reflection and refraction at

the boundary. At normal incidence, e = 0, the reflection

and transmission coefficients for the electric field are

f, _ k_ - ko _ 99
ki+k o 101 - -0"980;

f, = 2ko _ 2 = 0.0198 (36)
k i + k 0 101

Thus, there is only a small circular window from the

ionosphere into the air. It is directly below the antenna

and, at the distance 250 km from the antenna to the

boundary, it has the radius 2.5 km. Even in this

window, the field incident from the ionosphere is largely
reflected back upward with the reflection coefficient

-0.98. The transmission coefficient is 0.0198 for propa-
gation into the air.

In order to transmit a field through the window

into the air and down to the earth, the field pattern of
the antenna must have a significant amplitude within
0.57 ° of the perpendicular.

2.6 The Antenna

The properties of antennas in magnetoplasmas are

very complicated. Analyses have been carried out by

(32) Seshadri (1965), (1968) and Bhat (1973) with the steady
magnetic field parallel to the antenna and by Wunsch

(1967) with the magnetic field perpendicular to the

antenna. A detailed study of these investigations and

application of their results to the present problem are

(33) beyond the scope of this preliminary study. For present
purposes, the antenna will be treated as immersed in an

infinite homogenous medium with the wave number k i

characteristic of the Whistler mode for the VLF rate (8a)
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and k_ for the Alfven mode for the ELF range (8b).

There are two possibilities for the antenna with

the length h = 4 km and the radius a = 1 mm. These

are: (a) The antenna is coated with a layer of dielectric
with the radius b ~ 2 mm. If the dielectric is teflon,

Q, = 2.1. (b) The antenna is bare (or the insulation is

so thin that b/a _ 1). The properties of the antenna

are very different in these two cases.

a) The Insulated Antenna

A conductor with radius a and a dielectric coating

with radius b, relative permittivity ed,, and wave number

k d = kok//_r ' embedded in an infinite homogeneous

ionosphere with the wave number ki such that

[k i [2 >> k_, has the properties of a transmission line.

The wave number is

1kz = k d 1 + ln(b/a)

If( 7fro +
xl/2

2 - 0.327]} (37)k,b I

The characteristic impedance m

zc = _ In _b (3S)
2_rk_ a

In these formulas, r0 is the resistance per unit length of

the wire. For the Whistler mode at f = 9 kHz, it follows

that

k o = 1.88 x 10 .4 m -t, k d = 2.72xlO-4m -1,

k i = 1.88 x lO-2m -1 (39)

With radius a = 1 mm, r0 = 2.2x10 -4 fl/m so that

2fro�w, % = 0.0195 f_/m. This is negligible compared

with r/2, which contributes the radiation resistance per

unit length. With b = 2 mm,

k L = 13£ +ict L = (1.1 +/O.O01)x lO-3rn -1 (40)

so that

flz = 1.1xlO-3rn -1, AL = 5.7xlO3m = 5.7 kin, (41)

Z c = 116.4 D (42)

For a tether length of h = 4 kin,

h/)_ L = 0.70 (43)

The electrical length is sufficiently short so that,

regardless of whether the antenna is terminated in its

characteristic impedance so that a travelling wave of

current is maintained or it is simply driven as a monopole

against the space shuttle, the principal lobe of the field

pattern is in the equatorial plane O = r/2 and no

significant field is maintained in the downward direction

near O = 0. The insulated antenna is ideally suited for

a horizontal orientation of the antenna and is essentially

useless for the vertical orientation.

b) The Bare Antenna

At f = 9 kHz for the Whistler mode, the bare

wire of length h = 4 km = 12 Ai is electrically very long.

If it is terminated to produce a travelling wave of current

approximately given by I, = Ioeai', the electric field at

large distances from the antenna is

itOt20 ¢ikir [ h -ik'z'c_O .

E_ - 4r r ]o I,(zt)e ' s,n Odz' (44)

with

_(z) " " iki'' i2rV° (45)
= 5(O)e , 5(0)= f,_

where

_ 2 In 2..h_h (46)
a

Since w#o/kd, = 1, the result is

E_ - Vo g ikir
k_ r f(O) (47)

If(O) l - 1-cosO

The far-field pattern given by If(e)[ is shown graphically
in a polar plot in Fig. 2-2. It is seen that the principal

lobe is downward-directed and rotationally symmetric

with maximum at e_ = 14°.2. The field at O = 0 ° is,
of course, zero. There are eleven minor maxima between

the principal one and e = _r/2.

The field that enters the air from the ionosphere

according to the field pattern in Fig. 2.2 is extremely

small since the angle of incidence on the ionosphere-air

boundary must be almost vertically down, specifically

within 0.57 ° of the vertical. The magnitude of the field

at O=0.01 rad = 0.57 ° is /'(8)= 0.38, whereas it is

/',_(O) = 7.34 at the maximum.

In order to direct the maximum of the field

pattern vertically down continuously, the antenna must be
tilted 14°.2 from the vertical and then made to rotate so

that its lower end describes a circle. Since the tether

normally oscillates through an angle near 14°.2, it is only

necessary to impart a small transverse push to have it

trace the edge of a cone. The rate of circulation is

irrelevant so long as the tether continuously maintains an

angle of 14°.2 with the vertical.

If the maximum of the field pattern in Fig. 2-2 is

directed down, the full field intensity with I]'(O)[ = 7.34

is directed onto the circular window on the ionosphere-air

boundary so that even with the small transmission
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coefficient, the effective value of If(o)[ in the air is

I f(o) 1:o.15.

With h/a = 41103/10 -2 = 4x106 ,

= 2 ln(2h/a)= 31.8, (49)

and r = 400 kin,

lEVI Vo lxo.15 Vo 1.... x 0.15 =
r 31.8 4 x 105

V0 x 1.18 x 10 -8 (50)

For an applied driving voltage to the antenna of V0 ~
lkV, the field incident on the surface of the earth is

IESI ~ 1.18 × lO-5V/m (51)

This is easily measurable. The current at the driving

point of the antenna is obtained from (45). It is

2r x 102
[Iz(0)[- 1_-131.8 - 5.2 Amp (52)

Note that i', = fo/q_/: = 120zr/10 = 127r.

2.7 Conclusion

There are several possible modes for the transmis-

sion of electromagnetic waves through the ionosphere to

the earth surface. The Whistler mode appears to be the

most promising for the VLF band when the source is a

vertical travelling-wave monopole erected on the lower
side of the space shuttle. In order to maintain a

continuously significant field on the surface of the earth

or sea, it is necessary that the antenna be displaced from

the vertical by an angle of 14°.2 for f = 9 kHz and
rotated so that it traces the surface of a cone.

3. SMALL EXPENDABLE-TETHER DEPLOYMENT

SYSTEM (SEDS-1)

3.1 General Description

The Small Expendable-Tether Deployer System

(SEDS-1) is being built by NASA as a low-budget

secondary payload for a March 1993 flight on a U.S. Air

Force Delta II/GPS mission. SEDS will deploy a 23 kg

endmass (or payload) at the end of a 20 km long tether.

The experiment purpose is to test and demonstrate the

feasibility of the design concept and to verify the

computer models that have been built to predict tether

dynamic behavior during this type of low tension deploy-

ment. The key features of SEDS are its simplicity, low

tension deployment with minimum braking, non-retrieva-

bility of the tether (the tether is cut after it is fully

deployed), and low cost. The 20-km deployment, which

is initiated by spring ejection of the endmass at an initial

speed of 1.5 meters per second, last about 90 minutes

(one orbit).

3.2 Design Concept

SEDS consists of four parts: 1) the deployer

(tether wound on a core, canister cover and base plate);

2) the brake/cutter assembly; 3) the electronics box;

and 4) the endmass (or payload). A view of SEDS is
show in Figure 3.1. The tether unwinds - about 46500

turns - from the outside periphery of a stationary core-

there is no rotating reel. After unwinding the tether

travels through a small opening in the top of the canister,

to a friction brake, a tensiometer, then to the tether

cutter, and finally attaches to the payload. The entire

system weighs approximately 39 kg most of which is
the 23 kg endmass.

The brake cutter assembly contains a running-line

tensiomew:..,tepper motor for turning the brake, the

friction brake shaft and gearing, and tether cutter. The

friction brake slows the deployment speed by wrapping
several turns of the tether around a small shaft when

approximatei._ 19-kin or 41026 turns of tether have been

deployed The tether is made from a polyethylene
synthetic fiber called SPECTRA-1000. The 0.75 mm

diameter is much larger than necessary for strength on

this first flight but this size gives significant micrometeor-

oid protection (about a 0.1 percent risk for one orbit).

The endmass (or payload) weighs 23 kg and has
an overall size of 20 x 33 x 41 cm. It contains a three-

axis accelerometer, tensiometer, magnetometer, its own

power, computer, telemetry system and supporting elec-

tronics. Two antennas are mounted on the sides for data

transmission directly to the tracking stations during the

experiment. The endmass and tether are cut, at the

Delta II end, after deployment and burn-up on reentry

into the atmosphere.

3.3 Electronics System

The SEDS electronics data and control system will

record, store, and continuously downlink data over the

Delta II S-band telemetry channel. It counts the turns

as the tether unwinds from the spool, logs the time for

each turn, serves as an event timer, responds to sequencer

commands from the Delta II second stage, controls the

stepper-motor/brake system, and activates the pyrotech-

nic charge for the tether cutter. Data stored, besides the

turncounts, are tether tension, temperature, and supply

voltage. The storage capacity is 160 kilobytes (approxi-

mately 115 kilobytes are required) and the downlink

capacity ranges from 1 kilobit per second to 64 kilobits

per second (requirement is 4.8 kilobits per second). The

entire memory can be dumped in six minutes. The

system weighs about 3 kg and has an overall size of 8 x

13 x 29 cm. A block diagram is shown in Figure 3.2.



33-7

3.4 Mission

Thetetherdeploymentbegins3780secondsafter
DeltaII lift-offat theapogeeof a 204x 704km orbit.
Full deploymentof the20km tetheris reached5100
secondslater. Afterfull deployment,thetetherswings
for tenminutesthroughanangleof approximately50
degreestowardthelocalvertical. Thetetheris cut
duringtheswingwhenit isnearthelocalverticalposition
andoverthe PacificOceanat about150degreeseast
longitude.Thisoccursat 5800seconds(slightlymore
thanoneorbit)afterdeploymentbegins.Thereentry
takesone-thirdof an orbitsothetetherandpayload
shouldreenteroverthePacificOceannear100degrees
westlongitudeor justoff thecoastof Mexico.Table3.I
showstheDeltaII/SEDS-1sequenceof events.Figure
3.3givestheSEDS-1groundtrack.

3.5 Tether Dynamics Calculations

A major goal of the first SEDS flight is to validate

the extensive amount of computer modelling that has

been done during the last several years to predict the

dynamic behavior of a tether in space. The results of

some recent calculations done by Control Dynamics are

shown in Figure 3.3 for a 20 km deployment starting at

the apogee of a 204 x 704 km orbit and lasting for 5800

seconds (1.6 hours or a little more than one SEDS orbit).

Full deployment is reached at 5100 seconds followed by a

50 degree swing to the vertical that is completed at 5800

seconds when the tether is cut. During most of the

deployment period the tether position is forward of

vertical at an angle of about 50 degrees.

The tether length, deployment speed, and tension

are shown in Figure 3.4. Deployment begins with spring

ejection of the endmass at a speed of about 1.5 m/s.

Tension forces initially are 0.03 to 0.04 n (3 to 4 g) with

a slight increase beginning around 2700 seconds reaching

a value of 3.0 n at full deployment (5100 seconds) and a

maximum value of 4 n just before the tether is cut at
5800 seconds.

3.6 Measurements

The key measurements are the turns of the tether
versus time as the tether unwinds. This is sensed

optically and stored in the electronics system memory.

The command times for operating the stepper-motor
brake and the cutter are based on this measurement.

Also, tether length and payout speed are determined from
the turns data.

The time duration of each turn will be compared
with similar laboratory test data to evaluate the accuracy

of ground test results in predicting flight performance. A

reasonably close comparison is important to succeed at

developing future tether applications.

Other data collected will be temperature, tension

(just before the final exit guide), and supply voltage.

Radar data will be collected on the ground giving the

Delta II and payload position.

4. FEASIBILITY EXPERIMENT

4.1 Science And Technology Objectives

There are several issues of feasibility concerning

SEDS tethers that must be verified experimentally, before
these tethers can be used as antennas in communication

systems of practical relevance. First of all, we must

verify that the dynamics of tether deployment and

statlon-keeping is well understood, and fully controllable.

NASA-MSFC has scheduled several flights of SEDS sys-

tems, as piggy-back payloads on board the Air Force

Delta-II rocket, to test tether dynamics. There will be a

SEDS-1 flight in March 1993, a SEDS-2 flight in March

1994, and a SEDSAT mission in July 1994 (this mission is

under study but has not yet been approved). There will
also be an electrodynamic mission called PMG in June
1993.

Once that the dynamics is well understood, we

should start experimenting with the radiophysics and the
radioengineering issues that are fundamental to the use of

SEDS tethers as antennas, in communication links from
orbit to Earth surface.

The most relevant of the scientific investigations to

be carried out are the following:

(a) guidance of the e.m. waves radiated by the

tether, along the lines of force of the Earth geomagnetic

field, in the whistler regime, at VLF frequencies;

(b) Alfven wave guidance, also along the geomag-

netic lines of force, at ELF frequencies, below the ion

cyclotron frequency;

(c) investigation of non-linear effects in the iono-
sphere, due to the high level of radiated power. This

involves determining the threshold of occurrence of non-

linear effects, and establishing the analytical dependence

of these effects upon the level of radiated power;

(d) determination of the angular aperture of the

cone of capture of e.m. waves by the lines of force of the

Earth magnetic field;

(e) determination of the transmission and of the

reflection coefficients at the boundary between the bottom

of the ionosphere and the top of the atmosphere, as a

function of the angle of incidence (from above) of the e.

m. waves radiated by the SEDS tether, when they reach

this boundary in their descent toward the Earth surface;

(f) determination of the spatial extent of the
illuminated area on the Earth surface. This is essential

information, in order to establish the minimum number

of satellites that are required to cover at all times a large
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portion of the Earth surface (such as 60%, 80% or 100%).

The investigations listed above have an intrinsic

scientific value within the realm of radiophysics. In

addition, they represent essential steps that must be

undertaken toward the goal of determining the feasibility

of using SEDS tethers as antennas in space-to-ground
communication links.

4.2 Application Goals

should radiate a frequency of ~ 9 kHz. A second tether,

also 4 km long, could be used to generate DC electric

power, with the objective of recharging the payload's
batteries.

5.2 Description Of The Payload

The simplified block diagram of Figure 5-1 shows

the principal elements of the proposed payload. They
are:

Because the ultimate use of the ELF/VLF propa- (1)
gation paths from orbit to Earth surface is in communica-

tions, we must characterize these paths as communication

channels. The knowledge available on the applicable path
properties is extremely limited, so that we must start

from the fundamentals, and measure on the occasion of a

first experiment, the following parameters: (2)

(1) the response of the path to a "delta function"

in the time domain. This will provide the measurement

of the group delay, and of the time spread, inclusive of

multipath spread;

(2) the response of the path to a "delta function"

in the frequency domain. This will provide the measure-

ment on the frequency spread, inclusive of Doppler shift

and spread;

(3) the measurement of the path losses and of the
noise;

(4) the measurement of the spatial and temporal

variability of the channel properties;

(5) the distortion that affects specific communica-

tion waveforms, that are transmitted through the channel.

Once that the parameters above have been meas-

ured, it will be possible for communicators to select a

waveform and to design a link that makes the best use of

the available paths.

5. A SEDS/DELTA-II PAYLOAD FOR A FIRST FEA-
SIBILITY EXPERIMENT

5.1 General

There are several factors that make it advisable to

perform experiments on electrodynamic tethers by taking

advantage of the availability of SEDS (Carroll 1987;

Harrison et al., 1989) and of the Delta-II flight opportuni-

ties (Garvey and Matin, 1989). The most important

factor is the low cost and the high frequency of flights of

SEDS/Delta-II. In this paper we illustrate an experiment

for inclusion in the SEDS/Delta-II demonstration pro-

gram. The payload should be limited to radiation of

e.m. waves in the VLF band (experimenting with ELF

waves, a more difficult undertaking, should be considered

for later times). The tether could be 4 km long, and

2 conducting tethers, each 4 km long, each with its

deployer; the electrical resistance of each 4-kin

tether is 88 ohm for the first mission (later-on, it

could be lowered to 28 ohm); one tether teflon
coated and one tether bare.

3 plasma contactors, complete with power supply

and auxiliary units, each rated at 20 A, capable of
providing a low-resistance bridge between each end

of the tether and the ionosphere, and between the

platform and the ionosphere;

(3) one solid-state VLF transmitter to feed one of the

two tethers as a travelling-wave (TW) antenna at

~ 9 kHz. To function as a TW radiator, the

antenna requires the termination of the free end of

the tether with a resistor equal to its equivalent-

line characteristic impedance. Thus, the plasma

contactor makes the "ground connection" to the

ionospheric plasma;

(4) additional silver-zinc batteries on the Delta-II sec-

ond stage;

(5) DC/AC static inverter (high voltage input);

(6) AC/DC converters (low voltage input).

Figure 5-2 shows a possible location for the

payload on board the Delta-II. The required space is a

fraction of the available toroidal volume (with mean

radius 33", width 16" and height 20 ") all around the

guidance section of the Delta-II. The SEDS deployer is

accommodated in the shaded area of Figure 2.

As a DC electric power generator, the tether can

draw from the ionosphere a current of 12 A DC, under
the drive of a maximum electromotive force of 2.1 kV

provided by the V xB. t mechanism, where V is the

orbital velocity, B the intensity of the Earth magnetic

field, and £ is the tether's length.

As already indicated, while one of the two 4-kin
tethers is used to generate DC electric power, the other

tether is used as a travelling wave transmitting antenna,

at the frequency of 9 kHz.

This requires that the high-voltage emf due to the

tether (1.05 kilovolt DC) be inverted by a static inverter

into a low-voltage AC, that becomes easy to transform

into the wanted values and converted ultimately into the
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DC voltages required by the various power supplies. The
tether DC electric power generator will supplement the

batteries, will trickle charge them and stay connected with
them, while feeding the on-board loads. We have worked

out two cases for the DC generator:

(a) a 88 ohm tether, capable of feeding the

payload with a 30% duty cycle.

(b) a 28 ohm tether, capable of feeding 100% of

the time the same payload.

According to the SEDS deployer's manufacturer

(Tether Applications, Inc.) a 4-km x 1-mm diameter
tether with a resistance of 88 ohm can be accommodated

into the deployer canister without any substantial
modification to the hardware.

This tether will be used for the first mission. For

future missions the tether resistance could be reduced to

28 ohm by using a 1.7 ram-diameter Copper wire. In

this case the primary power generated by the upper tether

would be 21 kW, 10 kW of which are delivered to the

load (batteries or VLF transmitter) with a 100% duty

cycle. In this latter case, the SEDS deployer must be

enlarged.

A nominal inclination of 37 ° and an orbital altitude

greater than 400 km with a circular or a low eccentricity

orbit are acceptable. The prior knowledge of the orbital

parameters is a particularly important factor in our case
because we must establish the location of the receiving
sites on the Earth surface as a function of the orbital

parameters. We must make sure that the orbiting

system flies as close as possible over each receiving site.

In later flights, we could relax this specification and

explore signal detectability at substantial distances from

the ground track. For the first electrody-

namic/electromagnetic mission, however, the receiving

stations should be strictly located along the ground track.

5.4 Ground-Based Data Collection

Several instrumented sites at various locations on

the Earth surface will be used for data collection and

recording, equipped with the same instrumentation that

has been deveioped for the TSS-1 electrodynamic mission.

The existing instrumentation is mobile and can be

relocated at sites that are on the ground track of the

proposed ._EDS'Delta-II mission. This instrumentation

consists of the following equipment:

The total mass of the payload is 360 kg (_ 794

lb). This includes the tether masses, three plasma (a)

contactors inclusive of their power supplies and auxiliary

units, two Marman clamps, and two additional 250 Ah
Silver-Zinc batteries on the Delta II which enable a

mission duration of 4 days. Two of the three plasma
contactors are installed on the end masses of the SEDS

tether. One is attached to the platform itself. The -

primary power requirement for the payload is 28 volt DC,
10 kW at VLF. Use will be made of the Delta-II

telemetry channels available to payloads. This use, -
however, will be very limited because the scientific data

from our experiment are collected and recorded by the

receiving stations on the Earth surface, and not onboard

the platform. (b)

The receiving terminals that were used during the

flight of TSS-1 could be moved to new sites that are

suitable for the SEDS-1 mission of March 1993.

5.3 Orbital Flight Parameters

The parameters for the orbital flight of the

proposed electrodynamic/electromagnetic tether experi-

ment could be taken to be similar to the parameters of

the first SEDS/Delta-H flight (DeLoach et al., 1990),
presently scheduled for March 1993, devoted to the

measurement of the dynamic properties of the SEDS
tether.

We estimate that by adding 260 lb of Silver-Zinc

batteries (this figure is already included in the total mass

of 790 lb) to the Delta's second stage, the mission can last

as long as 4 days. The orbital decay will be approxi-

mately 2.5 km/orbit during electrodynamic operations.

Rece_ving/recording system developed for TSS-1
by Rice University under a subcontract from

Srnithsonian Astrophysical Observatory. This in-

strumentation, complete with data recorders, uses

the following sensors:

One set of 3-axis magnetic field sensor BF-4 (a coil

magnetometer) for the band 0.3 Hz to 500 Hz;

Two sets of 3-axis magnetic field sensor BF-6 (also

a coil magnetometer) for the band 100 Hz to 100
kHz.

Receiving/recording system developed for TSS-1

by University of Genova, Italy, using sensors that

were loaned to University of Genova by US Navy,

NUWC, New London, CT (NUWC sensors are

encapsulated in Bentos glass spheres suitable for

underwater deployment). The sensors are:

Two sets of 3-axis induction coil magnetometer for

the band 0.01 Hz to 100 Hz (Gritzke and Johnson,

19s_);

One set of Varian, optically pumped, cesium

vapour magnetometer.

Another magnetometer has been added to the

sensors that the University of Genova has borrowed from

the US Navy: a SQUID, multi-axis system that was

procured for the TSS-1 flight.

Given the planned orbital parameters, the schedule

of data collection at each of the ground-based sites can be

easily formulated with all necessary time accuracy. The
number of channels that will be recorded at each site are
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afunctionofthenumberof sensorsandof thenumberof
axialcomponentsfor eachsensor.In addition,achannel
will bedevotedto station'sidentificationandtimeinfor-
mationconsistingof Epochandof 1-secondtimemarks.
Pertinenttelemetrydata from SEDS/Delta-IIwill be
collected,processed,and formatted by the on-board

computer (Rupp, 1988). These data will then be trans-

mitted to the ground-based telemetry stations assigned to

the flight, via the Second Stage telemetry link.

6. OPERATIONAL USES OF THE ORBITING TER-

MINAL FOR TACTICAL AND STRATEGIC COM-

MUNICATIONS TO SUBMERGED SUBMARINES

The orbital emplacement of the transmitting ter-

minal brings with it the potentiality of covering, world-

wide, all ocean areas, inclusive of the polar caps, should

the orbit have a high-inclination. The waiting time,

however, to have available the satellite, for any given

location (should a single satellite be in orbit, with its

transmitting terminal), would be too long. A constella-

tion of several satellites would make it possible to cover,

at any one time, a large portion of the Earth surface.

Figure 6.1 shows that less than ten satellites might

be sufficient. A lot depends on the extent of the radius

of the illuminated area, that is a quantity not reliably
known from theory, and for which the final word will

come from an experiment, such as the one illustrated in

Section 5. Figure 6.1 shows that, assuming this radius to

be somewhere between 3,500 km and 5,000 km, the

required number of satellites would range between five

and ten, to assure 80°7oo coverage of the Earth surface.

With the constellation in place, assuming that

transmissions take place at VLF, the system could be

used to transmit EAM (Emergency Action Messages) to

submerged submarines. The strategic communications

link thus provided, would be a complement to

_TACAMO," and would be characterized by a greatly

enhanced geographical coverage. Should the ELF capabil-
ity, then, be added to the satellite, the link would

substantially augment the capabilities of the ground-based

ELF facilities presently in use by US Navy.

With the present decrease in emphasis in strategic

communications, due to the deep changes that have

recently occurred in the world's geopolitical situation,

tactical uses of the spaceborne transmitting terminal

discussed in this paper, may be of greater interest. This

system could be used by a Battle Group (Carrier,

Destroyers, Submarines, etc.), deployed in remote ocean

waters, to enable communications from a surface ship to

a deeply submerged vessel.

7. CONCLUSIONS AND RECOMMENDATIONS

Since the early days of radio, long, thln-wire

antennas have been a fundamental presence in transmis-

sion facilities at LF, VLF and lower frequencies. The

orbiting tethers represent the latest addition to this family

of long line radiators. It seems natural to perceive the

spaceborne tethers as potentially useful to fulfill commu-

nicationq requirements that are world-wide in character,

such as the strategic and tactical communications require-

ments of US Navy.

These authors hold the view that, notwithstanding

the lack of pressing motivations to add, at this time, new

operational systems to the communications arsenal, R&D

activity on this and similar advanced subjects, should be

vigorously pursued.

Especially in cases such as ours, in which a fully

probative experiment on an entirely novel technological

development can be performed at low cost, it is advisable

to proceed with it, learn to the fullest what the new

technology's capabilities are, and identify unrecognized

potentials, possibly leading to even broader and un-

foreseen applications for this technology.
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ABSTRACT

This paper describes a spacebome array of two long "Travelling Wave" antennas each tethered to a

spacecraft. The system orbits the Earth above the ionosphere with an angular separation, thus forming a
"V". Gravity gradient forces keep the long tethers taut and aligned along the vertical. The SmallErpendable
Deployer System can be used to deploy and control the tethers. Such an array is proposed for
radioastronomical observations in the 1-30 MHz frequency range.The tether V-shaped antenna provides a
higher directivity and gain as compared to regular long dipoles, yielding valuable data on the low frequency
spectrum characteristics of extragalactic sources, pulsars, supernova remnants and interstellar medium.

INTRODUCTION

Ground-based radio astronomy in the 1-30 Mhz range is difficult if not impossible due to the ionospheric

refraction. In the 60's NASA developed and launched the Radio Astronomy Explorers (RAE-1 and RAE- 2)

to perform such observations from space. Unfortunately, not all the scientific objectives were met due to

problems in deploying the long antennas, the Earth radio noise at low frequencies, etc.. Nevertheless some

data were of importance and RAE paved the way to future mission in spaceborne radio astronomy.

Tether tecnology could be the key to these future missions and the Small Expendable Deployer System

(SEDS) /1/ offers a simple and inexpensive way to deploy long tethers in space.In the following, an array

of two long tethers to be used as Travelling Wave (TW) antennas will be presented.

Long tethers axe very stable by aligning themselves along the local vertical while the spacecraft orbits the

Earth. The basic advantage in using a TW antenna over a long-wire multiwavelength electric dipole is that

the former is non-resonant. TW antennas have high directivity and the frequency band can be made very

broad, extending from a fraction of one Hertz up to the upper limit (30 MHz) of the HF band. Another

consequence is that the TW antenna is characterized by higher directivity and gain than the resonant dipole.

However, the TW antenna, like a resonant dipole is still characterized by a radiation pattern that has a null in

the direction of the axis. In most applications this is not a desirable feature. By arranging the antennas in

arrays it is possible to produce a pattern with the wanted characteristics. The simplest of all possible array

configurations is the "V antenna," consisting of a pair of TW antennas originating from the same point, and

angularly separated/2/,/3/. The V antenna's pattern has a maximum along the bisector of the separation

angle. This simple array, often in a double-V configuration, has found extensive use in the communications

practice on the Earth surface, especially in short-wave communications (frequency range 3 MHz to 30

mHz).

High resolution observations in the 1-30 MHz frequency range could address some impnant scientific

issues such as/4/:

- Study of the properties of radio sources at low frequencies



- Studyof

- Studyof

- Studyof

- Studyof

- Studyof

physicalprocessesin astrophysicalplasmas

interstellargasanditsdistribution

lowenergycosmicrays

pulsarswith flux densitiesincreasingatlow frequency

"old"electronsfor fossilremnantsofgalaxies
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THETRAVELLING WAVE ANTENNA

A long metal wire in Earth orbit aligned along the local vertical/5/, can naturally function as a long, thin-

wire antenna for transmission and reception of electromagnetic waves. An antenna that is well suited to

long spacebome tethers is the "Travelling Wave" (TW) antenna. A TW antenna requires grounding at both

ends and must be terminated with a resistance equal to the characteristic impedance of the equivalent

transmission line. Such a termination prevents a standing wave (with sinusoidal distribution of maxima and

minima) to establish itself along the antenna wire. The standing wave is due to the superimposition of a

wave propagating along the wire in one direction, and of a reflected wave moving along the wire in the

opposite direction. If the antenna is properly terminated, there is no reflected wave, hence a standing wave

is absent.
1

In space the TW antenna can be grounded by connecting each end to an open-ended _ lambda straight wire

(a 4 lambda "stub"). The stub is equivalent to a section of transmission line that is an open-circuit at its free

end, and that appears as a short circuit at the point where the stub is attached to the TW antenna, hence the

"grounding." The antenna current, if there are no losses in the wire, is constant along the wire.

Ronold W.P. King, Harvard University, has suggested an interesting alternative/6/: the wire of the TW

antenna can be made of resistive material, and the current that flows in the wire can be made of an

exponentially decreasing intensity. Should this intensity be made equal to zero at the end of the TW

antenna, there is no need any longer of .any grounding at that end, because no current would flow to the

ground (grounding at the other end of the tether is still required). One of the merits of King's suggestion is
1

that the elimination of the _ lambda stub (that is a resonant element) keeps fully broadbanded the TW

antenna. An example of pattem in free-space conditions is shown in figure 1. The tether is assumed to be 5

km long and the antenna frequency is 1 Mhz. Figure 1 shows that a TW antenna in free space conditions

has a null along the axis of the wire. Its main lobe is "cave" and the cross section of the lobe is an annulus,

at variance with the titular cross section that normally characterizes the lobe of a high-directivity antenna.

This undesirable feature can be corrected by using in orbit several TW antennas, and by combining their

outputs. A two-element array, the "V-antenna", produces by coherent summation, a beam with the main

lobe that is filled rather than cave. The angle [3of the maximum radiation measured from the axis of the wire

is a function of the ratio l/X, where I is the tether length and Z. the wavelength (see Table 1). The maximum

gain is achieved when the angular separation ct between the two arms of the V antenna is equal to 2[5 as

shown in figure 2. The pattern is referred to a V-antenna with arms 5 km long and with an angular

separation a equal to 24.6 °.
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LENGTH ,,, 5 KM - f= 1 MHz (l../k ,, 16.6}

Fig. 1. Radiation pattern of a single Travelling Wave Antenna 5 km long at l MHz (l/'k = 16.6)
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Fig. 2. Radiation pattem (E-plane) of a V-Travelling Wave Antenna with alms 5 Km long and an
angular separation of 24.6 ° at 1 MHz



T_al_le 1, Angle [3 of Maximum Radiation as a Function of//3, for two frequencies for a Travelling

Wave Antenna
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TErriER

LENGTH (Km)
5
10
20
50

//z
[1 MHz]

16.67
33.33
66.67
166.67

12.3
8.66
6.06
3.86

[30 MHz]
500
1000
2000
5000

(*)
2.25
1.65
1.06
0.7

THE SMALL EXPENDABLE DEPLOYER SYSTEM

The Small Expendable Deployer System (SEDS) was developed by the Energy Science

Laboratories, and at the present by Tether Applications, under the sponsorship of NASA/Marshall

Space Hight Center. SEDS does not retrieve the payload and consequently it has a very simple

design. The first SEDS flight is scheduled in March 1993. An instrumented box will be deployed

with a 20 km long tether from the second stage of a Delta II IlL

SEDS consists of a canister where the tether is spooled, a brake system, a turn counter, a

tcnsiometer and a computer. With reference to figure 3, the tether goes through the exit guide of the

canister, passes thorugh the brake, the tensiometer and a guillotine and then to the end-mass. In the

first flight the brake will be activated by the stepper motor at about 19 km bringing the payload to a

smooth stop.When the payload reaches the vertical the tether is severed and reenters into the

atmosphere. SEDS mass characteristics are given in table 2.

Fig. 3. SEDS Hardware



Table 2. SEDS mass and size (first mission)

Deployer canister

,Tether (Spectra)

Brake/Cu_r

Elec_rdcs

End-mass

Brakets/Clamps

Total

Masstkg)

3

7

1

2

25
4

42

Size (era)

25X33

20 km X 0.75mm

8X8X 20
8X 13X 25

20X 30X 40

SYSTEM DESCRIgrlON

The system consists of two spacecraft. Since the pattern is function of the ratio l/X, the tether

length and the angular separation between the two spacecraft must be chosen in such a way as to

keep the antenna system capable of providing the wanted directivity in the frequency band of

interest. In our preliminary study, the orbital height of the system is I0,000 Kin, the 50-kin long

tethers are made of Spectra with an aluminum or copper core and are 50 km long. The two

spacecraft are separated by a geocentric angle of 2 °. The patterns of the V-anterma are shown in

figure 4, 5, and 6 for 3, 15 and 25 MHz, respectively. The antenna characteristics are given in table

3.

Table 3. V-Antenna characteristics

f fMHz) l/X HPBW

3 [ 500 [ 6
10 1667 0.7
25 4167 0.5
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Fig. 4. Radiation pattem (E-plane) of a V-Travelling Wave Antenna with arms 50 Km long and an
angular separationof 2 ° at 3 MHz
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Fig. 5. Radiation pattern (E-plane) of a V-TraveUing Wave Antenna with arms 50 Km long and an
angular.separation of 2 ° at l0 MHz

I 1

100 200 300 400

Fig. 6. Radiation pattern (E-plane) of a V-Travelling Wave Antenna with arms 50 Km long and an
angular separation of 2 ° at 25 MHz



The two antennas orbit along coplanar orbits and are separated, ideally, by a constant geocentric

angle A8. The angular separation must be maintained within 10% in order to avoid degradation of

the resultant radiation pattern (i.e. the combination of the two antennas' patterns). Alternatively, a

differential attitude motion between the two antennas greater than 10% of the separation angle will

produce a degradation of the resultant radiation pattern.

At an altitude of 10,000 km above the Earth's surface, the aerodynamic drag is negligible. The

major perturbations to the relative position of the antennas, and hence to the relative angular

separation, are from differential forces due to: Sun's and Moon's gravity; Earth's J2 gravity

component; solar pressure.

Likewise, the major disturbances to the relative attitude of the antennas are from differential torques

due to: Earth's J2 and solar pressure.

- Earth's J2 Differential Effects -

Differential Forces

The differential force acting on the antennas separated by a geocentric angle A0 is obtained from the

12 perturbing potential. The radial (R), in-flight (0), and lateral (1.) components of the differential

force a_

8fR = _ A sin 2 i sin(20) A0

8fo = - A sin 2 i cos(20) AO (1)

1
8fL = - _ A sin(2i) cos0 A0

wher_ A = 3_E-)2RE2/r4, i is the orbital inclination, bE and R E the gravitational constant and [he

equatorial radius of the Earth, and 0 the argument of longitude of the antenna closer to the equator.

The differential precession of the two antennas is then as follows:

cl_ 8fL sine
dz - V sin iAO (2)

which leads to:

d._ A
- sin(20) cos i A0 O)

de 2rob 2

The integral of eqn (3) is null over any number of half orbits implying that no secular effect is

produced by [his differential force component. The integral of eqn (3) reaches a maximum value

over a quarter of an orbiu The maximum error of the separation angle is, therefore, as follows:

_-- = -)2 (RE/r) 2 cos i (4)
2

At an altitude of 10.000 kin. the maximum angular error is 0.002%.

Differential Torques

From eqn (I.I), the -t2 torque with respect to the center of mass of a dumbbell antenna (the tether

mass has been neglected) is



(RE'_21 2 mR sin 2 i sin(20) (5)
TJ2 = 6J2 °'_32 _,ran, /

where rcm is the geocentric distance of the antenna's center of mass (cm). I the anterma's length.

and m R = m l'm2/mtot the reduced mass of the two tip-masses of the antenna m 1 and m2.

The maximum differential attitude occurs when the antennas are on opposite sides of the equator,

i.e. 0 = nrd2 with n an integer. Then the differential torque is

8TJ 2 --6J2aD 2 /"RE'_212 mR sin2i A0 (6)

After equating eqn (6) to the gravity gradient restoring torque for small attitude angles 13,

TGG = 3m R _021213 (7)

the relative maximum attitude error is

e = 212 i,,rmaj sin2i
(8)

At an altitude of 10,000 km, the maximum attitude errors for polar orbits are 0.03%.

- Third-body Differential Effects -

The third-body perturbation force, obtained from the third-body effective potential, is as follows:

where the subscript Ill is referred to either the Sun or the Moon. _III and r are the vector radii from

the Earth to the third body and to the antennas respectively, and r̂ll I is the unit vector.

The components of the differential force on the two antennas are obtained by transforming eqn (5)

to the orbiting reference frame ROL, taking the partial derivative with respect to 0, and assuming

that the third body has zero declination. Hence

(SfR = -3 _I.._.H..£..r [sin(2ot) cos(20) + sin(20) cos(2cz)]A0
rrrr"rrn
/.tlII r

fifo--3 rH-_--_m cos i [sin(2cx) sin(20) - cos(2cx) cos(20)]A0 (I0)

_trlI _.L.r •

8f'L = -3 _ rill sm i [sin(2e0 sin(20) - cos(2ot) cos(20)]A0

where otis the right ascension of the third body.

Eqn (2), then, yields the differential precession between the two antennas. Here again there is no

secular effect and the maximum angular error occurs over one quarter of an orbit as follows:

,=_0_,2 = a"I'I(_o_ [2sin(2tt)+cos(2cx)) (II)

where oiiI 2 = l.tiiilriii 3 and coo is the orbital rate ofthe antenns.

The maximum angular error occurs for a third-body right ascension of 40 deg and 140 deg. The

errors are 0.0003% due to the Moon and 0.0001% due to the Sun for an orbital altitude of I0,000

kin.



- SolarPressureDifferentialEffects-

Torques

At high altitudes the solar pressure torque may be relatively significant with respect to other external

torques. For the travelling wave antenna, the tether and the solar panels provide independent torque

components as indicated in the following formula that gives the attitude misalignment with respect

to the local vertical

MF

80 - 3a)02 [AsP KSP/(l m 1) + r KT siny/mD] (12)

where MF is the solar momentum flux equal to 4.4x 10"6 N/m 2, ASP the area of the solar panels

perpendicular to solar rays, r and I the radius and length of the tether, 7 the solar view angle of the

tether, KSp and KT the reflectances of the solar panels and the tether respectively, and mD=

m l*m2/(m2 - m 1 ). If m2 < m 1 the tether torque contribution (second term in square brackets) has

a sign opposite to the solar panels contribution. The two contributions depend upon system

geometry, values of KSP and KT, and power requirement. It is possible, however, to have a zero

total torque with realistic and appropriate values of the system parameters.

In a more general situation, an upper bound of the solar radiation torque can be obtained by

neglecting the tether contribution and by assuming typical values of system parameters as follows: 1

kW of power delivered by the solar panel with an efficiency of 10%, y= 90 deg, KSP = 1.5, r-- 1

ram, 1 -- 10 kin. At an altitude of 10,000 kin, the attitude misalignment is 80 - 0.002 (:leg. A

relative attitude error equal to this misalignment value can be reached across the terminator with one

antenna in the light and the other in the shade.

CONCLUSIONS

The possibility of performing high resolution observations from orbit of radioastronomical sources

in the band 1-30 MHz, can be greatly enhanced by the advent of spacebome tethers.

There is now a substantial larger flexibility in configuring a radioastmnomical observatory in Earth

orbit, where tethers can be used as structural elements to provide support to a large array of dipoles.

The requirement of simplicity will be, however, the prevailing criterion, and we would expect that,

in the conceivable future, the dual-platform V-antenna discussed in this paper will be considered for

implementation

9
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7.0 PROPAGATION OF ELF WAVES INTO THE IONOSPHERE

The research conducted on this topic focused on the development of a method for the

numerical calculation of the electromagnetic wave field on the Earth's surface associated

with the operation of an electrodynamic tethered satellite system of constant or slowly

varying current orbiting in the ionosphere. One of the experiment of the TSS-1 mission

calls for the detection on the Earth's surface of the electromagnetic waves emitted from

TSS. The development of this numerical model is therefore instrumental for evaluating the

strength of the signal on the ground.

The following paper sumnlarizes the results of the investigation mentioned above.

See also Quarterly Reports No. 18, No. 19, and No. 20 of this contract for more

details.





CALCULATING THE ELECTROMAGNETIC FIELD ON THE EARTH DUE TO
AN ELECTRODYNAM1C TErHERED SYSTEM IN THE IONOSPHERE

89-1553-C_

Roben D. Estes

Harvard-Smithsonian Center for Astrophysics
Cambridge, MA 02138

Abstract

Thls paper oufllnes a method for numeri-

cal calculation of the electromagnetic wave field
on the Earth's surface associated with the

operation of an electrodynamlc tethered satellite
system of constant or slowly varying current high

in the ionosphere. The model used allows for ar-

bitrary angles between the geomagnetic field
lines and the horizontal plane and for vertical

variations in plasma density. Ion species, and
Ion-neutral collision frequency. The shear Alfv_n

wave-packet generated by an electrodynamic
tether in an infinite, uniform magnetoplasma is
taken as the Incident wave. The functional

forms of the Fourier components of the incident
and reflected shear Alfv6n waves and the up-

wardly decreasing evanescent compressional
Alfv6n solution are known in the upper iono-

sphere. The form of the solution in the at-
mospheric cavity is easily obtained. This knowl-

edge enables us. in principle, to obtain the wave
field at the ionospheric boundary and, hence, on

the Earth's surface by numerical integration.

Preliminary conclusions based on general
principles are that the Ionospheric waves do not

propagate Into the atmosphere and that the im-

age of the Alfv_n "wings" from a steady-current
tether should be greatly broadened on the
Earth's surface and will probably be too weak to

detect, even for high current values.

conductor to be immersed in an infinite plasma

medium. When the boundary with the atmo-
sphere is far enough away, this serves as a useful

approximation for calculating the Ionospheric
waves and estimating their contribution to the

tethered system's electrical impedance; but it

tells us nothing about the electromagnetic signal
we should expect to be associated with the teth-

ered system In the atmosphere or on the Earth's
surface.

Heretofore there has not been a systematic
treatment of the wave reflections and other ef-

fects of nonuniformities in the plasma medium.
The inclusion of Ion-neutral eolllslons introduces

the possibility of coupling to the fast magne-
tosonic [compressional Alfv_n} wave modes. The

work reported here represents a step towards a

solution to the problem that takes into account
the effects of boundaries and of vertical varia-

tions in plasma density, collision frequencies.
and Ion species.

Generalization of Previous Results

As a first step, we generalize our previous
results on steady-current tethers to the case

where the geomagnetic field makes an arbitrary
angle with the horizontal plane, in which the

tethered system moves [See Figure I}.

Introduction

The problem of electromagnetic wave

generation by an electrodynamlc tethered satel-
lite system Is Important both for the ordinary

operation of such systems and for their possible

application as orbiting transmitters. The
tether's ionospheric "circuit closure" problem is

closely linked with the propagation of charge-

carrying electromagnetic wave packets away

from the tethered system.

Previous analyses of the waves generated by
large conductors moving through a magne-

toplasma I'6 {in our case a tethered system mov-
ing through the Ionosphere) have considered the

Thls paper is declared a work of the U.S. Govern-
ment and is not subject to copyright protection in
the United States.
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This would approximately correspond to a
system at its maximum excursion in latitude for

a non-equatorlal orbit• Having previously
demonstrated the equivalence of an orbiting
*ribbon" current distribution and the idealized
dumbbell tether current distribution used in the

earlier analysis 6, we can conveniently define the
tether current distribution as

,,+
where x'= x - v=t and _' lles along the vertical

with y'=0 at the middle of the tether. The y-
axis, which is orthogonal to B [the z axis) is

also indicated in Figure 1. H(z) is the Heaviside
function defined by

H(x)= l,x _0 {2)
H(x)=O,z <O

and I. L. and L x are the tether current, tether

length, and system dimension in the line-of-
flight direction, respectively.

We now need k.jk. wherejk Is the

Fourier transform of the tether current density.

This Is most conveniently calculated In the (x, y',
z') co-ordinate system, where

k • Jk = k.j_.,. [31

It is easy to obtain

• 21
Ji.f = -R'6( w- k,v,)

.n k---i--) _" kT)

k: L= kf

141

The Fourier transform of the plasma current
along the field lines is

j, ic= I, k- E
= 4 _0).. z {5)

and

k.E=
4=_w k • j

where t_ is the diagonal component of the cold

plasma dielectric tensor perpendicular to the

magnetic field 6 and Gaussian units are used. The

only difference from the horizontal magnetic
field case is in the argument of the second sin
factor in {4).

When the inverse Fourier integrals of {5)

are carried out. the result is once again field-line
sheet currents at the ends of the system; only

the charge-exchange regions at the ends of the

system are now located at y =+-_cos 8. The

top and bottom wings are connected by the con-
dition of current continuity but otherwise they

appear to be independent phenomena generated
by the disturbances at their respective ends of

the system. Except for the shift in lines of dis-
continuity in Jz to coincide with those traced by

the charge exchange terminals, the Alfvc_n wing
solutions are the same as before.

]Electrodynamic Tether in a Bounded, Non-Uni-

form Ionosphere: Basic Physics

The first significant new feature we intro-

duce to the problem is the presence of bound-

aries: the one between the ionosphere and the
atmosphere and the one between the atmo-

sphere and the Earth. For simplicity, we begin
our analysis wlth the atmospheric cavity consid-

ered as a vacuum and the Earth as a perfect con-
ductor. For electromagnetic problems the first
approximation is reasonable, and the second

approximation greatly simplifies the boundary
value problem at the Earth. If the ocean surface

is considered, it is Justifiable as a first approxi-

mation since its main consequence Is a small
horizontal electric field component at the sur-
face.

We make the assumption that the tethered

system is sufflcienfly far from the atmospheric

boundary (or any steep gradients in plasma pa-
rameters} that we need not be concerned with

the boundaries' effects on the system. That is,
we assume that the infinite-medium solution

previously obtained is a reasonable approxima-

tion to the "incident" wave-packet generated by
the system operating in the bounded ionosphere.

For now we assume a tethered system high in
the ionosphere above a fiat Earth. We first re-



strict ourselvesto the steady-state operation of

such a system. We allow only vertical variations

in ionospheric quantities.
The complexity of our problem, even in

the simplified form stated above, requires a nu-

merlcal analysis. There are. however, a number
of observations that can be made based on the

fundamental physics of the system under con-
sideration. Our approach follows the general
outlines of the analyses of ionospheric waves

made by P. Greifinger 7. C. and P. Greiflnger 8, and

Rudenko, et al. 9. The particularities of our
moving source require some modifications to the

analysis from the outset, however.

Horizontal Plane-Wave Components

In order to utilize the formalism of the

above-mentloned authors, we seek an incident

wave solution written in terms of plane waves in

the horizontal plane. The amplitudes of these
wave components depends on the vertical co-

ordinate, y' in our notation. A number of
transformations are required to obtain this form

for our incident wave-packet. We must also take

into account the relationship that exists between

the x-component of the wave vector and the fre-
quency (as seen in the plasma, i.e. the ter-
restrial, rest frame) for the steady-state opera-

tion of an electrodynamic tethered system:
namely, the DSppler relation a_ = k_=. At this

initial stage of our analysis we restrict ourselves

to theAlfv_n region kcv•<<_ (_c= is the ion

cyclotron frequency), which is consistent with

our consideration of systems in the upper re-
gions of the ionosphere.

FoIlowlng the reasoning used to derive
expression (4]. we obtain the following expres-
sions for the Fourier transformed electric field

components

= 8ico.___/

E,., kit= 6( oJ- k,v,) . {7)

where the J. subscript refers to components

perpendicular to the magnetic field, which lles
along the negative z direction*.

*In all that follows we will use the notation k y • k/,

etc. to represent vector components in the primed
system of co-ordinates.

Thus Maxwell's equations give us

c
B, =--_( kfE, - k,E,) = O (8)

Since E, =0 by assumption. Maxwell's

equations further yield

k•c

B,_ = + _E,., {9)

We now carry out the inverse Fourier integration

over k•. Since we are considering downward

moving waves, which correspond to the negative

z direction in our co-ordinate system, we close
the contour of integration in the lower half of

the complex k, plane and pick up the contribu-

tion of the pole at

___w
k• =- vA (I0).

Using

k,y+ k.z= k,y" + k:z" (ll)

and the transformation of variables

we obtain

=sine J ] 5dwdk•dk', (12)

EX B

- 2IV A sin e

(-i[" y'-,.
(13)

- 2/v a sin e

a sin k', ¢ose- ,; sin e)
k±k.
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where

• w k:cot 0
k , = vasin8 (15}

and

2
2 2 *

k+= k, + (k; cose- k,sine) (16)

Equations {9) and (I0} imply

B= ,=± c-£-E• U _,*
A

{17)

• {vertically up}

The hort_ntal wave-vector/_ lies in the z-a" plane. The
z ax_s is In the direction of the orbitaJ velcx:i W.

Figure 2. Geometry of the Problem

horizontal wave vector. Figures 2 and 3 show
the co-ordinates to which we refer.

/x
All vectors he in the horizontal plane. (_ is parallel

to the horizontal k vector. ]_ is chosen to make a right.

handed orthogonal system of ((_, y', _)

F_gu:e 3 The co-ordinate system ddmed by the

horizontal wave vector

Note that each horizontal wave vector

(k,. k',)deftnes a different co-ordinate system

(6. _). Thls Implies that the numerical inte-

gration must be carried out separately for each

(k,, k',) pair. In all that follows the vector k

with no subscript refers to the horizontal wave

vector of magnitude

k =_,+k; = {19)

In the (6, ]_) system the wave electric
field components are

E4= E'kk (20}

The horizontal components of the field are

now at hand. The x-component is one horizontal

component. The other horizontal component of

the wave field (the z'-component} is easily ob-

tained utilizing E, = B, = 0:

E',= - E, sine (18)

The corresponding expression holds true for the

B field components.

Following the approach of the references

mentioned earlier (particularly Rudenko. et aLL
we now need to obtain the horizontal wave field

components parallel and perpendicular to the

C"
{21)

The corresponding expressions hold for the
components of the B field.

Having obtained the components of the

incident wave packet, we can consider some of
the general physical characteristics of the sys-

tem. Since the only variations in our model are

in the vertical direction, the dependence of our
incident Alfv_n wing wave-packet components

on the horizontal co-ordinates is given every-

where by the horizontal plane wave factor. Thus

each component of the incident wave-packet ar-
rives at the ionospheric boundary with the same
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horizontalwavevector that it had high in the
ionosphere. This has importa_ntconsequences
for the solutionsin the atmosphereand on the
Earth.

Atmospherlc Cavl ty Solution

The equations for the horizontal electric

field components in the atmospheric cavity are

, o_ a E =
dy _,c 6,_

(22)

where k, the magnitude of the horizontal wave

vector, has the same value as in the ionosphere.
Similarly. the frequency is unchanged across the

boundary. The identical equations hold for the
horizontal magnetic field components.

The incident wave components contain the
factor 6(w-kzv_), a consequence of the

steady-state operation that we have assumed up
until now. An immediate consequence of this is

that the factor -_- k in the second term of

equations {22) is always negative, since

[kzv.[<Ikc[
This means that the Alfven wings gener-

ated by the steady state operation of an electro-

dynamic tethered satellite system will not prop-
agate into the atmospheric cavity. That is. there

is total reflection at the atmosphere's boundary
with the ionosphere. Our solution corresponds

to a surface wave at the ionospheric boundary.
Taking into account the perfect conductor

boundary condition at the Earth's surface, we

obtain the solution in the atmospheric cavity

 ioh(p (y'-( y'.- H)))
E6. D= Es. p(Y'b) sinh(pH) {23)

B #= -_--_ E,(y'b)
 o,h (p(y'-( - H)))

nh(p H )

(24)

ipc E . , .
B, = ---_- _(y,)

H)))
sinh(p H )

{25)

where

C2 (26}

and Y'b and H are the values of y' at the iono-

spheric boundary and the distance of this
boundary from the Earth's surface, respectively.

Equations (24)-(25} show that the ratio of
the magnetic field on the Earth's surface to that

at the ionospheric boundary is

v,., ( - ) -,
= (cosh CpH))

(27)

The height of the ionosphere may be taken
to be around 100 km. The consequence of

equations {23)-(261 Is that the image of the
Alfv_n wings on the Earth's surface will be much

wider than the wings are in the ionosphere.

since only the wave-packet components with
horizontal wavelengths of hundreds of kilome-

ters will escape severe attenuation. Since such
long wavelength components make up only a

small fraction of the wavepacket for a reasonably
sized tethered system and since the noise level

is much higher for the lower regions of the ULF
band. we tentatively conclude that the magnetic

field image of the Alfven Wings on the Earth's
surface will probably be too weak to detect in the

case of a steady-current tether, even one with a

hlgh current.
Hughes and Southwood I0 reached similar

conclusions about the "shielding" of ionospheric

disturbances with short horizontal wavelengths.
These authors emphasized the role of Hall cur-

rents in the lower part of the ionosphere in

reducing the B _ component of the Ionospheric

waves; but it is obvious from the analysis that the
result Is a general consequence of Maxwelrs

equations that would hold for different models of

the ionospheric conductivity

The Ionospheric Wave-Guide

So far we have not discussed the possible

effects of vertical variations in plasma density
and ionic composition. Since the Alfv_n speed

depends dlrecfly on these quantities, their vari-
at.lon changes the effective dielectric constant

of the plasma. This has consequences for the

waves that can propagate in the ionosphere. The
dispersion relation for the anisotropic AIfv_n

wave is approximately

_= k,v a (28}
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The dispersion relation for the fast magne-
tosonlc (lsotroplc A1fv6n) wave is

2 2 2
ca = ku v A (29)

waves will focus on the ionospheric wave-guide

and its possible excitation by electrodynamic

tethered satellite systems with time-varying
currents. In the next section we map out the

method we plan to use in our numerical investi-
gation of this question.

where k u is the total wave vector, including

horizontal and vertical components. For a given
horizontal wave-vector, frequency, and Alfv6n

speed combination it may be impossible to find a
real vertical wave vector component that satis-

fies the dispersion relation (29).
In this case the fast magnetosonic mode is

evanescent. Thls is the case for the steady-cur-

rent electrodynamlc tether, which excites waves
satisfying (28). but by virtue of the ca= k,v x

condition cannot satisfy (29) for any real vertical

wave vector component. The fast magnetosonlc
mode has thus been discarded in our

calculations of the Alfv6n wings.
We have seen that for a given horizontal k

vector and frequency ca. the isotroplc wave will

propagate or not depending on the Alfv_n speed.

The Alfv6n speed has a minimum value in the F-
region of the ionosphere, so an isotropic wave

can be confined to the region around thls mini-
mum--the ionospheric wave guide. Figure 4. il-

lustrates the ionospheric wave-gulde. The
Greifinger and Rudenko references 7"8 discuss

the ionospheric wave-guide and note the occur-
rence of wave-guide resonances. Rudenko. et

aL 9. make the point that an Alfv_n wave, incident

from high in the ionosphere, couples to the fast

magnetosonic wave within the ionospheric wave-
guide region for the particular frequency and
wave-vector combination.

The ionospheric wave-guide traps elec-

tromagnetic energy in a horizontal layer of the
ionosphere. Stimulating resonances of the iono-

spheric wave-guide with an electrodynamlc
tether would seem to be a possible way of over-

coming the difficulties in obtaining a measur-
able signal on the Earth's surface.

It is easy to see that no steady-current

electrodynamic tethered system can achieve this

in the Earth's ionosphere, however. Since an
orbiting steady-current tether cannot stimulate

propagating fast magnetosonic waves even in the

region of minimum Alfv_n speed, it is impos-
sible for Alfv_n waves generated by a steady-

current tether anywhere in the ionosphere to

excite propagating fast magnetosonic waves.
There is no ionospheric wave-guide for steady-
current tethers.

The next phase of our research into the

problem of tether-generated electromagnetic

ionospheric waveguide:k VA2 --<C0:[

Atmosphere (vacuum)

conducting Earth

Figure 4. The ionospheric waveguide

Numerical Integration of the Wave Equations

Our method applies to systems that di-

rectly excite only shear Alfv6n waves. We would
expect the method to have its greatest utility in

the case of slowly-varying tether currents with
frequency components such that coupling to

ionospheric wave-guide modes occurs.
It should be noted that we are talking only

about variations in the tether current sufl3clenfly
slow that the tether current distribution can still

be considered as independent of the vertical co-
ordinate along the tether's length. The tether is

not functioning as an antenna in the normal
sense of the word in this case: it is still a source

of varying current to the ionospheric transmis-

sion line, a concept that we have emphasized in
our previous analysis.

Slowly Varylng Current

We assume a tether current distribution

that is Just expression (I} multiplied by cos(_0t).

where a_ is the oscillation frequency of the

tether current. Let us suppose that the tethered

system is equipped with a suitable power supply
to enable it to reverse the current. Any time

variation can be broken into its Fourier compo-
nents, so the choice is not restrictive, except

that we are explicitly excluding spatial variations

in the tether current along Its length, which im-

pllcifly limits the 'range of frequencies we can
consider.

Expressions (13} and (14), which define

the incident wave packet, are modified only by
the replacement of the delta function

6(ca- k,v,) _
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( _(o:÷ %- k,v,)+ 8(o:- o:o- k,v,))
2 {30)

The Ionospheric Model and Equations

Having derived the incident Alfven wave-
packet in the desired form, we now turn our

attention to the numerical methods we propose

to use for solving the problem. We are following
the method outlined in Rudenko, et al.. 9

However, our notation differs in some respects
from that used in the Rudenko reference. In

addition there are a few serious typographical
errors in that paper. For these reasons, we will
outline the method here.

Maxwell's equations for the horizontal

wave field components In the ionosphere can be
written in the following compact way :

.dF
-t--_-y, =OF (31)

gl
= ( - ]_,cotO - I_,cotO

0 0

(1 o)g2= 0 I

- _,cotOg4 = J_=cotO

define the the 4x4 matrix

{37)

(38}

00 ) (39}

G=(gl gl)g3 g, (40)

In the expressions above, _', and _x refer

to the dimensionless horizontal wave-vector

components defined by the scaling factor k.

The normalized Alfvdn speed D is defined by

v_.A.A
u 0

The quantities

where we define F as the four-component vec-
tor

F =_, Ep H,, H_ ) c3:1

with the third and fourth components given by

.H_ = _---E--)B, (34J

For our numerical work we use dimen-

sionless quantities. The dimensionless fre-
quency is defined by

-- ¢_.

where _. is a scaling length and v0 is the Alfv&a

speed in the region in which the wave-packets
originate. The variable ._' is Just the vertical

spatial co-ordinate in units of _..
The 2x2 submatrices

(41}

and

along with the Alfv_n speed, express the dielec-
tric properties of the ionospheric medium.

Here vi and Dci are the Ion-neutral collision

frequency and the ion cyclotron frequency, re-

spectively. The Alfvfin speed, vi , and l'_,i all

vary with altitude in our model.

For the frequency range and horizontal

wave-vectors to which we are limiting our analy-
sis, there are four well-defined independent so-

lutions to equation (31) in the upper ionosphere:

two shear Alfvfin solutions, corresponding to
positive and negative vertical wave-vector com-

ponents, and two isotropic Alfv_n solutions, one

that grows exponentially with increasing y' and

another that falls off exponentially with _,'.

g3 =

u_g, lccot e I_ "_ It -f,cos el __1

J-*j

(36)
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The shear Alfv_n solution with negative
vertical wave-vectorcomponentcorrespondsto
the incident wave.whosecomponentswe have
calculated. The upward travelingshearAlfv_n
solution then corresponds to a reflected wave.
Of the two isotroplc solutions, only the upwardly

decreasing one makes physical sense. It corre-

sponds to leakage of the ducted fast magne-
tosonic wave from the ionospheric wave-guide.
Thus we are left with three physically meaning-

ful solutions to equation (31) at *infinity" (the

location of our tethered system, high in the

ionosphere).
While we know the amplitude of the inci-

dent wave-packet solution at infinity, the ampli-
tudes of the other two solutions are unknown. It

turns out that knowledge of the functional form

of these solutions at infinity, combined with the

boundary conditions at the ionosphere/atmo-
sphere interface and the functional form of the

solutions in the atmospheric cavity, determines
the solution at the ionospheric boundary and.
hence, on the Earth's surface.

The Admi_tanc_ Matrices

Let us now sketch the means by which this
can be accomplished. First we introduce the
admittance matrices, which are variations of

those defined by Budden II. We define the ad-

mittance matrix A(i'/)(_,_, _')as the 2x2 ma-

trix that satisfies the equation

where F _ and F J are two solutions of (31) and

ct and _ are two arbitrary complex constants.
The admittance matrix transforms a linear

combination of the electric field components of

the two independent solutions into the same
linear combination of the corresponding

magnetic field components, as defined by equa-
tions (32)-(34).

It is straightforward to obtain from {31}

and (43) the following differential equation for
an admittance matrix A defined as in (43) :

- id-_-;A, =- AA- A g4A
d_ gl+ +g3 {44)

where the &i are the matrices defined in (36)-

(39).
The admittance matrices contain the ratios

of electromagnetic field components rather than
their absolute values. This has an important

advantage for numerical integrations down
through the ionosphere, since it avoids the

problem of numerical swamping brought on by
the exponential growth of an initially small mix

of the downward growing solution.
Since we know the functional form of the

solutions at infinity, we can construct the ad-
mittance matrices at infinity in the following

wa_

-!

¢i.j) X 3 X 3 X_ X, {45)
A (co, k) = i _ , j

X 4 X, X 2 X 2

where the X _ are the kno_'n functional forms

of the F _ solutions at infinity. These can then
be taken as the initial values for numerical inte-

gration down to the boundary with the atmo-

sphere.
A b, the boundary matrix at the atmo-

sphere/ionosphere boundary is defined by

r,(sDj- tF (s'DJ
(46)

where the F corresponds to the total solution at

the boundary, including the contributions from
the reflected and ducted waves, as well as the

incident wave.

For the case of a perfectly conducting

Earth this corresponds to

{47)

The Solution at the Ionospheric Boundary_ and on
the Earth's Surface

The solution at the boundary may be writ-
ten as

F (9'b)= B,F '(_'b)+ B2Fi(_'_) + B, l_(9'b) (48)
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where F I and F 2 denote the reflected and in-

cident shear Alfv_n solutions, respectively, and

F 3 denotes the ducted wave solution, with the

B_ complex constants. The coefficient B_ is

known from the incident shear Alfv_n solution at

infinity.

An obvious consequence of the definition
of the admittance matrices (43) Is that

(Af_'ll('_,]_,_') - A(_"O('_,j_,_'))I F/ 1F: =0(49}

for i=k.

We can utilize expressions {43). (46), (48).

and (49) to obtain the following equation, which

is true on the boundary between the Ionosphere
and the atmosphere:

• (='_)(-- I F_I (50)r= =

-A ",,,]

This expression, which relates the electric
field components of the total solution (48) on

the boundary to the electric field components of

the incident wave solution on the boundary by
means of the admittance and boundary matrices.
is the basis for our numerical method. We invert

( .(t,_)/_
the matr= -^ to. .Y,J)on the
left hand side of (501 to obtain the electric field

components on the boundary. Then the
boundary matrix A b yields the magnetic field

components on the boundary. The atmospheric

cavity solutlon (24)-(25] yields the magnetic
field on the Earth's surface and anywhere in the

atmosphere. The required admittance matrices

and the incident wave solution on the boundary
are to be obtained by means of numerical inte-

gration of the equations (44} and (31).

All of the analysis outlined in the preced-
ing paragraphs must be carried out for each

horizontal wave vector component. The com-
plete solution on the Earth's surface is obtained

by summing over all these solutions to obtain the

inverse Fourier transform. We have begun soft-

ware development to carry out the program of
numerical analysis.
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8.0 REENTRY OF TETHERED CAPSULES

A vertical or alternatively a swinging tether can provide the initial AV to force the

reentry of a capsule attached at the tip of a downward tether. Once the tether is cut, the

capsule can reenter with the long tether attached to it. Upon entering the dense atmosphere,

the tether drags the capsule by decelerating the reentry at high altitudes and, consequently,

strongly reducing the maximum temperature experienced by the capsule. For this effect to

be fully exploited, the tether must be made of heat-resistant materials such as graphite,

silicon carbide, boron carbide or similar.

The small satellite of SEDS-I reentered with the tether attached to it and its tensiometer

(load cells to be more precise) clearly shows the beginning of an exponentially increasing

deceleration provided by the tether before the telemetry link was lost. In the case of

SEDS-I, the tether was Spectra-1000 with a very low melting temperature of 140 °C.

Consequently, the tether burnt at an altitude somewhat lower than 105 km, i.e., without

slowing down the satellite during the most critical phase of reentry.

Conversely, a heat-resistant tether could reduce the maximum temperature of the

capsule during reentry from 27(X) K to less than 500 K. The maximum temperature of the

tether would be about 1000 K which is well below the mehing temperatures of the

candidate materials mentioned above (e.g., several materials suitable for tethers have a

maximum operating temperature well above 10(X) K).

A paper is included herewith which highlights the numerical results obtained for the

reentry of a tethered capsule. Moreover, the reentry of SEDS-I is also simulated in order to

estimate the ahitude at which the tether and the satellite burn in the upper atmosphere.

Maximum temperatures and reentry trajectories are then computed for the three following

cases: (1) a heat resistant tether attached to the reentry capsule; (2) a low-melting-point

tether (i.e., SEDS-I); and (3) a reentry capsule without tether.

See also Quarterly Reports No. 25 and No. 26 of this contract for more details.
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3 Technische Universit_t Miinchen, Germany

Abstract

Atmospheric reentry, even when initiated from a circular

low Earth orbit, requires heavy heat shields, ablative

materials or radiative dissipation techniques.

Semianalytical and numerical simulations of the atmosphe-

ric reentry from low Earth orbits of a capsule with a 20-kan,
attached, heat resistant tether have shown that the thermal

input flux on the capsule is reduced by more than one order

of magnitude with respect to a comparable reentry without
tether.

Long tethers have low ballistic coefficients and a large

surface for heat dissipation. Moreover, a long tether is

stabilized by gravity gradient and consequently tends to

maintain a high angle of attack with respect to the wind

velocity. The exposed surface of a 20-km-long 1-mm
,,1

diameter tether is 20 m-, which is much larger than the

cross section of a reentry capsule. The resulting strong drag

decelerates the capsule during reentry like a conceivable

hypersonic parachute would do.

This paper describes the methods and results of the simula-

tion of the SEDS endmass reentry with different tethers.

Introduction

Most of the fundamental work concerning atmospheric

reentry was done in the sixties. Facing projects such as the

Space Station, S_ger, and Hermes the research activities in

aerothermodynamics and the interest in atmospheric reentry

missions have been growing over the last years. In several

countries new reentry capsules are under development, e.g.

the American Westar capsule and the German Express and

Mirka capsules.

During atmospheric reentry a part of the vehicles total ener-

gy is dissipated and transfered to the surrounding medium

by two heat transfer mechanismes, convection and radia-

Copyright © 1992 by Manfred Krischke. Published by the hater-
national Astronautical Federation, with permission

l Aerospace Engineer

2Staff scientist Radio and Geoastronomy Division

3Assistant, Aerospace Engineering

tion. Typical values for the heat load on a reentering capsu-

le are between 1.3 MW/m 2 and 4 MW/m 2. These heat loads

require a special protection which consitsts in general of a

heavy ablative heatshield and thermal insulation.

The reentry of a spacecraft is usually initiated by fhing a re-

tromotor, which decelerates the vehicle down to reentry ve-

locity. Tethers have long been proposed as a means to pro-

vide the necessary dV for reentry. They have the advantage

of not polluting the orbit and transferring the angular mo-

mentumfrom the lower to the upper spacevehicle. During

our research on the atmospheric reentry of tethered space-

craft and our simulation of the reentry of the SEDS (Small

Expendable Tether Depioyer) endmass a new surprising
application of tethers has been found. A heat resistant tether

which is attached to the reentenng body works like a hyper-

sonic parachute. This hypersonic parachute slows down the

vehicle already in very high altitudes and thus lowers the

heat loads during the reentry in the denser atmosphere.

SEDS

\

Fig. 1: The Small Expendable Tether Deployer (2)

The need for inorbit experimentation and demonstration of

tether technology before flying major missions led to the

development of an inexpensive tethered space system for

carrying out precursor flights, the Small Expendable-Tether



carrying out precursor flights, the Small Expendable-Tether

Deployment System (SEDS (1)). Unlike TSSI, SEDS does

not retrieve the payload attached to the end of a 20km-long
thin tether. By avoiding the complex control system

necessary for retrieval, the design of the depioyer is
drastically simplified. SEDS flies as a secondary payload on
a Delta II rocket. The Hardware of the SEDS project is

already built, tested, and ready for the Hight, which is
scheduled for 1993.

The SEDS System consists of the tether deployer with the
tether and an instrumented endmass. The endmass, which is

connected to the deployer by the tether, is ejected by a

spring-loaded marman clamp. After a period of 1.5 h the

deployment of the 20 kin-long tether is completed and the
tether is cut at the deployer end. This operation puts the

endmass and the tether on a reentry ellipse. During the

reentry the tether and the endmass are supposed to burn up
in the upper atmosphere.

In our research we consider also the use of a reentry capsule
and a heat resistant tether in the SEDS configuration.

considered. In addition the tensional forces are provided by
the visco-elastic tether segments that connect two adjacent

lumps. The aerothermodynamic heating is computed by

using the formulas for heat,transfer analysis by Lees (5)
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Modelling

For the simulation of the reentry of a tethered spacecraft
two different models have been used. The first model was

developed within the Harvard Smithsonian Center for

Astrophysics (3) for the simulation of orbital tether dyna-

mics. The original computer code which is called Master20
has been modified to simulate reentry.

Fig. 3: The density profile of the lumped masses model

In addition to the model described above a much simpler

model was developed to prove the plausability of the nume-
rical simulation with the Master20 software code. The tet-

her is assumed to be rigid and straight with a constant angle
of attack. The endmass is modelled by an attached point
mass.

Te_er

The tether dynamics are simulated in three dimensions by

modelling the tether with 7 point masses connected by t_ ,-

massless springs and viscous dashpots. The endmass is re-

presented by an additional pointmass.

_ " t i I °

Ii •

m t -

7 "

Fig 4" Kinematics of the simple model

The aerodynamic forces are computed a simple expo-with

c. nential density profile.

Fig. 3: Kinematics of the lumped masses model

The aerodynamic forces are computed on the basis of a ro-

tating US Standard Atmosphere 1976 (4). The gravitational
model is a JO+J2 model. Lifting effects on the tether are not

Simulations

The differential equations of both models are numerically

integrated by using a 4th order Runge-Kutta Integrator. In
addition to these numerical solutions a semianalytical solu-



don similar to the "second order solution of entry

dynamics" by W.H.T. Loh (6) of the simple model could be

found.

The comparison of the different solutions showed a very

good agreement. In this paper only the results of the simula-

tion of the lumped masses model are discussed.

The simulations start at the time of the tether cut at an alti-

tude of 700 km. The orbital velocity of the endmass is 7276

riffs.

Solutions of the lumped masses model

We have simulated different reentry cases. One with a heat

resistant tether which is connected to the endmass during

the whole reentry, one with the tether disconnected all the
time or in other words endmass without tether, and one with

a melting tether (>420 K) which is the case in the ftrst
SEDS mission.

The simulations show (see Fig. 5) that the shape of the

tether is very stable up to the region where the endmass

enters the atmosphere. Fig.5 represents a series of snapshots

of the reentry of the tether and the endmass. The snapshots

are taken every 100 s. The distances are with respect to the

Delta's second stage which rotates around the Earth on the

elliptical orbit. For a better understanding, the altitudes at

the beginning and at the end of the snapshots are shown. In

the figure.
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Fig. 6: Altitude of first tethersegment and endmass for three
different cases

The velocity profiles of the endmass and the first

tetherscgment (Fig. 7) are very interesting. It shows that the

tether decelerates the endmass in a higher altitude which

means that the system enters the denser atmosphere with a

much lower velocity. Since the melting temperature of the

material of the SEDS tether is very low (420 K), the

velocity profile of the case whereby the tether and the

endmass are disconnected when the tether starts to melt is

very similar to the case whereby the tether and the endmass
are disconnected all the time.
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Fig. 5: Snapshots of a part of the reentry of the endmass and
the tether

In Fig. 6 the seperation of the endmass and the tether when

thetether reaches the melting temperature of 420 K for

spectra is very clear. The system is entering the dense at-

mosphere after about 1850 sec from release.

Fig. 7: Velocity profile of endmass and fu'st tethersegment
over the altitude

The plot of the tether tension (Fig. 8) shows that the vibra-

tions following the cut of the tether are damped out after a

while and the tension swings smoothly around the value of

the gravity gradient. When the system enters the atmosphe-

re tension rapidly grows up to an maximum of more than
2000 N.
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The heat fluxes on the endmass which are shown in Fig. 9

demonstrate the dramatic change for a reentry with a heat
resistant tether compared to the case without tether or with
a melting tether. The maximum heat flux is diminuished by
about one order of magnitude.

Fig. I0: Temperature ofendmass

As we can see in the snapshot display (Fig. 5) the
onentauon of the tether is a/most constant with respect to
the wmdveloctty as long as the tether is out of the dense

atmosphere. Fig. 11 shows the same effect. Once the tether
enters the atmosphere it tends to aline itself with the wind-
veiocily vector.
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Fig. 9: Aerodynamic thermal flux of endmass

With the computed heat flux on the endmass we made a
simple calculation of the temperature of the endmass. By
using only the mass of the aluminium box (7kg) for the heat

capacity of the endmass (total mass of 23kg) in the thermal
equations we assume that the heat transfer between the ou-
ter aluminium shell and the inner instrumentation is very

low. We consider only the incoming aerothermodynamic
heat flux and the outgoing radiation heat flux. The tempe-
rature of the endmass for the three cases, as shown in Fig.
10, demonstrates also very well the influence of the tether.
Whereas for the connected tether and endmass the tem-

perature stays far below the melting temperature, the
disconnected endmass evaporates in the atmosphere.
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Fig. 11: Orientation of the tethersegments

The tethersegments reach different maximum temperatures

and fluxes. The aerodynamics fluxes of the tethersegments
depend strongly on the angle of attack of the segments.The
computation of the tether temperatures (Fig. 12) shows that
the tether does not reach temperatures higher than 100OK.

For modem materials such as quartz or graphite this tempe-
rature is not too high.
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on the Martian surface. Many other applicationscould be
conseived in the future.

Even with current technology and materials a first testmis-

sion seems to be feasible. Testing this attractive alternative
could readily be carried out in connection with the Ameri-
can SEDS, the German-Russian RAPLrNZEL project or

using on of the frequent piggy back opportunities of diffe-
rent launchers.

A suitable capsule could be the German MIRKA capsule
which is under development at JENA OPTRONIC in Jena
and at KAYSER-THREDE GmbH in Munich or a small

Russian capsule which will be developed by the SAMARA
AVIATION INST/TUT, Russia in Cooperation with the
TECHNICAL UNIVERSITY OF MUNICH and KAYSER-

THREDE GmbH..

Fig. 12: Temperatures of the tethersegments
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Fig. 13: Thermal aerodynamical fluxes ofthetetherseg
ments

Conclusions

The simulations of the reentry of the SEDS endmass shows

a new and very promising application of tethers. A heat re-
sistant tether attached to a reentry body acts as a hypersonic

parachute and reduces the heat loads of reentry body of a-
bout one order of magnitude. The tether which already re-

places the retromotor for the initiation of the reentry also
simplifies the necessary heat protection of the reentry cap-
sule. A heat resistant tether would be very advantageous for

sample returns from the Space station. A tether does not
produce pollution like a retromotor and can drastically re-
duce the mass required for the heatshield of the reentry spa-

cecraft. The same considerations apply for unmanned Mars
missions, whereby a heat resistant tether could not only be

used for aeroassisted breaking (7) and for a low altitude te-

thered Mars probe (8) but also for a low temperature reentry
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9.0 DEPLOYMENT DYNAMICS OF SEDS-I

Figure Captions

Figs. 9.1 (a-i) Dynamics during deployment of SEDS-1. Initial conditions and orbital

characteristics as follows: 198x723 km elliptical orbit; ejection velocity =

1.64 m/s; ejection angle = -4.7 deg (backwards); orbital anomaly at

satellite ejection = 170 deg (i.e., 10 deg before apogee). The minimum

tension in these simulation runs varies from 10 mN to 40 mN.

Figs. 9.2(a-d) Simulation runs of SEDS-I for relatively high values of the minimum

tension, i.e., from 50 naN to 70 mN. The system and orbital

characteristics are as in Figs. 9.1.
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9.1 SEDS-I deployer

The SEDS deployer is a passive (i.e., without any retrieval capability) system

designed and built by Tether Applications Inc. of San Diego, California.

The deployer is a large, stationary spool of tether which deploys along the axial

direction, from the outer perimeter of the spool. Upon exiting the deployer canister, the

tether, as it unwinds, cuts through two light beams which shine on two photodetectors

thereby counting the numbers of deployed tether turns. Subsequently, the tether goes

through a brake, a tensiometer, and a tether cutter. The brake is a barber pole that, when

engaged, forces the tether to spiral around the pole, hence prt_ucing a friction force that

varies exponentially with the number of brake turns.

The SEDS deployer can handle satellites with a ma_,,, of up to 30,000 kg for short

tethers of 4 km and a mass of 90 kg for the longest tether of 80 kin. In its present

configuration the small satellite at the tether tip is only 23 kg and the tether is 20 km long

made of a carbon fiber called Spectra-1000. The satellite, in tile current configuration (i.e.,

SEDS-I and SEDS-II) is ejected by a spring device (Marm',ull clamp) which provides an

ejection velocity of 1.(_ m/s.

The potential application of the SEDS deployer are many, especially in the fields of

atmospheric science, reentry of spacecraft, and injection of spacecraft to different orbits

without the use of thrusters.

The first paper included at the end of this section gives a concise description of the

SEDS deployer, the small satellite utilized for SEDS-I and SEDS-II, the characteristic of

the tether and the potential applications of the system.

The second paper included at the end of this section describes the complex attitude

dynamics of SEDS-1 end-mass and a passive device to reduce the attitude oscillations.
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9.2 Simulation of SEDS-I Deployment Dynamics

The deployment dynamics of SEDS-1 was analyzed for the initial conditions and

orbital parameters expected for the first mission. They are as follows: 198x723 km

elliptical orbit; ejection velocity = 1.64 m/s; ejection angle = -4.7 deg (backwards); orbital

anomaly at satellite ejection = 170 deg (i.e., 10 deg before apogee).

The frictional tension model adopted in the following simulations is the model

developed by J. Carroll and documented by J. Glaese in Ref. [1]. The friction is modeled

as the sum of two terms: a static term (the minimum tension) and a dynamic term

proportional to the velocity squared. The brake amplifies the two terms above by

increasing them exponentially with the wrap angle of the tether around the brake-post time

the friction coefficient.

An additional friction multiplier is provided by the exit angle between the tether and the

exit guide of the deployer. This effect is also modeled with an exponential function with

the exit angle time the friction coefficient as the exponent. In formulas:

T = (To + IpV 2 Arcl e E) e B e(fxAbs(0o-0)) (9.1)

where:

Arcl = 1 - AsolXL/Lfull

L = tether deployed length,

Lfull = fully-deployed tether length,

Asol = tether annulus solidity,

B = brake parameter = 2r_ f n,

f = friction coefficient = 0.18

n = number of tether turns around the brake post,

To = minimum tension,

= linear density of the tether = 3.3x 10-4 kg/m,P

0 = in plane libration angle,

0 o = null exit angle = 65 deg,

I = inertia muhiplier,

E = area exponent.

The minimunl tension is determined by the frictional force in the absence of any

braking action. This tension component is, in first approximation, velocity independent
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andconsequentlywewill call it thestaticcomponentof thetension.Theothercomponent

of thetensionis adynamiccomponentwhichdependsuponthevelocitysquared.Thefirst

exponentialterm in eqn (9.1)modelstheeffectof the brakingaction wherebythe brake

parameterB is proportionalto thenumberof braketurns. Thesecondexponentialfunction

models the effect of the friction due to theexit angleof the tetherwith respectto the

deployerexit guide.

Thestaticcomponentof thetensiondominatesthedeploymentdynamicsin theearly

partof deployment.Thestatictermalsoaffectsthedurationof thedeploymentwherebyat

ahighertensioncorrespondsafasterdeploymentandviceversafor a lowerstatictension.

Thedynamictensionaffectsthedeploymentprofile at comparativelyhighvelocities,i.e.,

for thelatterpartof deployment.

Figures 9.1(a)-9.1(i) show the deployment dynamicsfor different values of the

minimumtension. A higherminimumtensionimpliesadeploymentwhich is slowerthan
nominalbefore7 km of deployedtetherlength(crossoverpoint) andhigherthannominal

afterthecrossoverpoint (seeFig. 9.1(a)). Theneteffect is afasterdeploymentfor higher
values of the minimt,m tension. The maximum tetherspeedis also higher for higher

minimum tethertension(seeFig. 9.l(b)).

In the abovesimulations,the brakeis activatedat a tether lengthof 18.94km (i.e.,

95% of the fully deployedtether length). The final tetherspeedis about7 m/s. For a

brake-postrotationalspeedof 0.0145turn/sanda minimumtensionrangingfrom 10mN

to 40 raN, thenumberof braketurnsbeforereachingthetetherendrangesbetween1.4and

1.8(seeFig. 9.1(e)) wherethe lower numberof turnscorrespondsto thehighervalueof
the minimum tension. The tether tensionvs time for various valuesof the minimum

tensionareshownin Figs.9.1(t")-9.l(i).

The following tensionmodelparameterswereconsiderednominalbeforetheflight of

SEDS-I [2]:

Minimum tension = 20 mN,

Inertia multiplier = 3,

Annulus solidity = 0.96,

Area exponent = -0.8.
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9.2 Off-Nominal Deployment Cases

If the minimum tether tension is high, the momentum imparted to the end-mass at

ejection can be entirely dissipated by the frictional forces. In the following simulation runs,

shown in Figs. 9.2(a)-9.2(d), the minimum tension is increased up to values as high as 70

mN.

Full deployment is attained for values of minimum tension lower than 65 mN.

Moreover, the deployment stops temporarily for values of minimum tension between 50

mN and 65 mN. The deployment stops temporarily at a tether length that ranges between

0.55 km and 0.85 km where the shorter length corresponds to the higher minimum tension.

The pull of the gravity gradient against the frictional forces is responsible for resuming the

deployment in those cases whereby the minimum tension is less than 65 mN.

For a minimum tension of 70 mN, the deployment stops at a tether length of 0.5 km.

Since the gravity gradient is too weak at that tether length and the friction is too high, the

deployment does not resume.
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9.3 Conclusions on the simulation of SEDS-I deployment

The results of the pre-flight deployment simulations, indicate that SEDS-I can reach

the fully deployed length of 20 km if the minimum tension is below 65 mN.

For a minimum tension between 50 mN and 65 mN, the deployment stops temporarily

at a tether length ranging from 0.85 km for the lower tension to 0.55 km for the higher

tension. The deployment subsequently resumes thanks to the gravity gradient.

For a minimum tension of 70 raN, the deployment stops at a tether length of 0.5 km

and never resumes.

For values of the minimum tension between 10 mN and 40 mN, the deployment never

stops. The deployment profile is qualitatively the same for all these cases. The maximum

in-plane angle ranges from 52 deg to 75 deg. The time to reach the final tether length

ranges from 4,650 s to 5,200 s. The time from ejection to the tether swinging across the

local vertical ranges from 5,610 s to 6,250 s. The shorter times correspond to high

minimum tensions.

From the SEDS- 1 flight data, it can be inferred that the value of the minimum tension

was about 35 mN, the maximum angle of libration 57 deg, the maximum length of tether of

19.94 km was reached after 4602 s from ejection, the end of the tether was reached with a

velocity of about 7 m/s. The brake was ramped up at constant speed at about 19 km of

deployed tether length. The brake post had turned 1.5 turn before the end of deployment.

This was not sufficient to bring the tether velocity to zero before the end of deployment,

demonstrating the need for a close-loop control for improving the brake performance. The

tether was cut at t = 5611 s when the tether was close to the local vertical. The satellite with

the tether attached reentered and burnt in the upper atmosphere 1/3 of an orbit after release.

Visual observations from the ground showed the last pieces of burning fragments at 48 km

of altitude. From the last-transmitted telemetry data, the tether was still attached to the

satellite at an altitude of 107 kin.

9.4 References
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In-Orbit Experimentation with the Small Expendable-
Tether Deployment System*

Abstract The Small Expendable-Tether Deployment System (SEDS) is a lightweight deployer

capable of deploying instrumented packages and other tethered payloads, with a mass

limit of 1 metric ton, to a distance of up to 20 km. Since the payloads are not retrieved.

the system is simple and inexpensive. On its first flight, presently scheduled for 1992,

the deployer will be attached to the second stage of a Delta-ll rocket, which will

provide the stabilised platform, for the deployment of the tethered payload.

SEDS is particularly suitable for complementing the Tethered Satellite missions by

providing a flexible system for experimenting v.lth the tether-in-space technology.

SEDS can also provide a convenient means of testing ,nstruments and/or procedures

that require the use of long tethers.

* Based on a paper presented at the 41st IAF

Congress. Dresden. German3,'. 6-12 October

1990.
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1. Introduction The need for in-orbit experimentation and demonstration before flying majo;

missions that involve innovative technology is stimulating the development of inexpen

sive space systems for carrying out precursor flights. The Small Expendable-Tethe_

Deployment System (SEDS) falls into this category, having been developed by Energ 3

Science Laboratories (ESL)* with NASA/Marshall Space Flight Center sponsorship

to provide capabilities complementary to the Tethered-Satellite System (TSS).

Unlike TSS, SEDS does not retrieve the payload attached to the end of a 20 km-lon_

thin tether 1. By avoiding the complex control system necessary for retrieval, the

design of the deployer is drastically simplified. Moreover, since SEDS flies as a secon-

dary payload, it can take advantage of the frequent Delta flights 2. This makes a SEDS

launch possible every few months, starting with the first mission presently schedu!ed

for 1992.

2. Hardware description SEDS consists of a tether spool housed in a 33 cm x 25 cm (diameter) cylindrical

canister. The tether unwinds from the end of a stationary reel (Fig. 1). While unwin-

ding from the spool, the tether crosses two light beams, generating an electrical pulse

every half a turn. There are no moving parts within the canister other than the tether

itself. The tether tension at the exit is solely due to tether inertia, stiffness and friction.

After passing through the canister's exit guide, the tether goes through a brake, a

tensiometer, and a guillotine 3.

The tensiometer is a spring-loaded device which measures the lateral pull produced

by the tension, since the tether is at an angle to the measuring device. The brake is

a 'barber's pole' activated by a stepper motor (Fig. 1). When the gear rotates, the tether

is forced to spiral around the brake axle thereby producing a controllable frictional

force. This 'adjustable-path' braking method provides a tension that varies exponential-

ly with the number of turns wrapped around the brake axle up to the breaking strength

of the tether. The guillotine is a pyro-activated cutting device for disposing of the tether

and the payload at the end of the mission.

SEDS' deployer has an overall mass of 13 kg, including a 7 kg, 20 km-long tether.

This tether is capable of handling payloads weighing up to 1 metric ton. The first

payload, however, will have a mass of only 23 kg. A summary of the masses and

dimensions of the SEDS components 4 is given in Table 1.

The tether has a diameter of 0.75 mm and a linear density of 0.33 kg/km. The tether

material is Spectra-1000, a high-strength polyethylene synthetic fibre, which yields a

Figure 1. Tether spool, brake and cutter of
the SEDS deployer

" ESL personnel who developed SEDS have

recentl 3 split off to l_rm Tether Applications.

2S ESA Journal local. V,_I 15



Table !. SEDS mass and size data

Item Mass ¢kg) Size (cm)

Deployer Canister 3 25 x 33

Tether 7 20 km x 0.75 mm

Brake/Cutter 1 8 x 8 x 20

Electronics 2 8 x 13 x 25

End Mass 23 20 × 30 × 40

Brackets/Clamps 4 n/a

Total 40

Table 2. Characteristics of tether materials

Tensile Specific Tensile

Density Strength Strength Modulus

(g/cm 3) (GN/m 2) (mx 1051 (GN/m'-'I

Spectra- 1000 0.97 2.99 3.1 172

Kevlar-29 1.44 2.76 19 131

Steel 7.85 1.45 0.2 207

Aluminium 2.64 0.31 0.1 69

breaking strength of 850 N for the SEDS tether. The characteristics of Spectra-1000

are compared with those of Kevlar-29, steel and aluminium in Table 2. It has the

highest tensile-strength/weight ratio (i.e. specific strength) of the four materials.

Since Spectra has a melting point of only 147°C and rapidly loses its strength above

80°C, this material is suitable for high-altitude missions like SEDS and TSS1, but not

for low-altitude atmospheric missions. The estimated tether temperature for SEDS

during deployment varies from 20°C to about -II0°C. The minimum temperature is

reached during eclipses and the maximum occurs before tether deployment. These

temperatures are well within the Spectra operating limits of +66°C and -267°C.

The canister will be attached to a Delta second stage above the 'Miniskirt' in the

Guidance Section" (Fig. 2). An end mass, connected to the tether tip, is mounted

side-by-side with the deployer before deployment (Fig. 3). This end mass is ejected

by a spring-loaded Marman clamp (Fig. 4) and deployed to a distance of 20 km in

1.5 h period 3. At the end of the mission, the tether will be cut at the deployer end.

Figure 2. SEDS' location on the Delta-If

second stage



Figure 3. Flight assembly of SEDS" deployer
and end mass

Figure 4. End-mass ejection mechanism
(Marman clampJ

This operation deorbits the payload and the tether, which then burn up in the upper

atmosphere one-third of an orbit after being cut loose.

The end mass, which is a rectangular box of Aluminium-6061 with a radar corner

reflector, is instrumented with a three-axis gyro package, a three-axis tensiometer

mounted at the tether attachment point, a three-axis magnetometer, and temperature

sensors 4. The characteristics of these instruments are given in Table 3. The

accelerometers and the three-axis tensiometer have three channels each with three

different measurement ranges. In this way, a high relative accuracy is provided over

a large dynamic range.

Data from the instruments on the end mass are collected at a rate of either 1 Hz or

10 Hz by the onboard computer and stored in the 0.5 Mbyte RAM memory 5. Data

are continually transmitted by means of an S-band transmitter and recorded whenever

SEDS is in sight of a ground station. The transmission rate for the payload data is

1.25 kbit/s. The deployer data are transmitted on a different channel through the

Delta's telemetry link at a rate of 4.8 kbit/s. The modulation scheme is IRIG-

compatible and the data are time-tagged in order to correlate events on the end mass

and on the deployer.

Table 3. End-mass instrument characteristics

Range Resolution

Three-Axis Magnetometer +600 mG 4.7 mG

Three-Axis Accelerometer ±1 mg 8.3 _g low range

±5 mg 42 _.g medium range

±50 mg 0.42 mg high range

Three-Axis Tensiometer ± 100 mN 0.83 mN low range

±l N 8.3 mN medium range

± 10 N 83 mN high range

3. Orbital dynamics On the first mission, the Delta second stage is expected to follow a 100 × 400

nautical mile orbit (not yet finalised). The deployment of the tethered payload starts

at apogee by triggerifig the pyros of the Marman clamp, thereby ejecting the end mass

with 1.6 m/s initial velocity. The end mass pulls the tether out of the canister while

following a trajectory dictated by the initial AV and the tether tension produced by

frictional forces 6. When the gravity gradient overtakes the other forces at about

1--2 km distance from the Delta, the deployment rate increases. At a distance of

"_(_ ES-_ Jnurnal 1001. V_q [5



19 km, the brake is activated, the speed of the end mass is smoothly reduced to zero

and the system librates toward the local vertical (LIO. As the end mass approaches

LV, about 1020 s after braking begins, the tether is cut loose. The end mass and the

tether follow a reentry trajectory and burn up in the upper atmosphere one-third of

an orbit later.

The duration of the first mission is limited by the energy provided by the launcher's

silver-zinc batteries. Mission duration can be increased, at a price, on future flights

by adding an extra battery to the Delta.

Figure 5a shows the trajectory of the end mass and the tether (side view) from t =0

to t=5600 s with snapshots taken every 200 s. Figure 5b shows the tether tension,

speed and length as a function of time. Figure 5c shows snapshots (side view) every

10 s for the last 700 s of the deployment. Some features of the transverse waves along

the tether are visible in this figure.

SEDS" tether dynamics is simulated by modelling the tether with seven point masses

connected by massless springs and viscous dashpots. The Delta-II second stage and

the end mass are modelled with two additional point masses. In the computer

simulation used to derive the above results, the environmental models are as follows:

aerodynamic torces are based on a Jacchia 1977 density' model, while the gravity

threes are computed by' means of a Jo+J, gravity model. In addition, the tensional

forces are provided by' the visco-elastic tether segments connecting two adjacent

lumps 7.

SEDS' first mission is designed to explore the dynamics of a long tethered system,

and to analyse specifically: the motion of the end-mass during deployment: the tether

motion: the wave propagation along the tether: and the material damping

characteristics.

To assist the investigation of tether dynamics, a set of radar dipoles has been

embedded into the tether at its mid-point. These dipoles will be tracked, together with

the Delta-ll stage and the end mass. by radars on the ground, in order to provide an

absolute reference frame for studying the motion of the system• The radar dipoles will

also make the first lateral harmonic of the tether motion detectable.

In addition, three 3 m-long lead wires have been embedded into the tether at the 17.9,

18.3. and 18.7 km points. Each will produce a tensional pulse, close to the end of the

tether's deployment, lasting 0.3 s and with an amplitude 2.5 times higher than the

tension's unperturbed value. These tensional pulses will excite waves along the tether,

which will be detected by' the tensiometer and/or accelerometers. Consequently, it will

be possible to analyse wave propagation, tether-material damping, and elasticity

characteristics.

4. First mission profile

Several future missions are being planned which go beyond the investigation of tether

dynamics• These are precursor flights forY:

(i) electrodynamic experiments with short, highly conductive tethers;

(ii) payload orbit circularisation;

(iiil reentry-capsule deorbit:

(ivl data collection by means of atmospheric probes (either while tethered or after

release);

Iv) precision attitude control of the end-mass using tether-induced control torques:

(vi) low-altitude spaceborne gravity gradiometry or other remote-sensing activities.

Since tether retrieval is inherently unstable, large tether oscillations excited during

station-keeping are very' difficult to damp out during retrieval. Consequently, the

excitation of large tether oscillations must be limited in a tethered system that needs

to retrieve the end mass. Since SEDS does not retrieve the tethered payload, the system

can be used to conduct experiments that involve large dynamic disturbances.

For example. SEDS is ideal for carrying out electrodynamic experiments with high

5. Future flights



Figures 5a-c. Results of simulation of SEDS
orbita{dynamics

<,

15 ./

X-AXIS (KM) 5 0

Z
O
¢/?

z
uj
b-,

20 -
(b)

15 Length_-

10
5

X-AXIS (KM) 0



currents and consequently large electrodynamic drag. For similar reasons, SEDS is

best suited for aerothermodynamic research at very low altitudes. The strong

atmospheric drag at low altitudes or the strong electrodynamic drag at high tether

currents excites large tether oscillations, which makes the retrieval of the payload very

difficult if not impossible.

The expendability of the hardware calls for a focus on low-cost payloads (an excep-

tion is the use of SEDS to de-orbit a reusable re-entry capsule or probe). The fact that

the host vehicle is unmanned should speed up the development and flight of innovative

experiments by eliminating potential delays associated with human safety issues.

Consequently, SEDS is suitable for carrying out early precursor flights for

demonstrating the validity of tether technology in space and evaluating the perfor-

mance of prototype scientific instrumentation which is being developed for future

flights on more ambitious systems.

The Small Expendable-Tether Deployment System (SEDS) provides a low-cost

facility for conducting experiments that require the use of long tethers. Such

experiments range from precursor flights for investigating the dynamics of tethered

systems, to electrodynamic and aerothermodynamic flight experiments. Specifically,

the first mission (TDE-I) is a dynamic-explorer mission for providing data

complementary to the Tethered Satellite flight data.

Because of SEDS' low cost, and because of the frequent flight opportunities.

scientists will be able to obtain a quick turnaround of their experimental results. In

some instances. SEDS lends itself to more adventurous and innovative experiments.

where the low cost of a flight will make the taking of risks more acceptable than on

a Shuttle-based mission.

6. Conclusions
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Abstract

The Small Expendable-Tether Deployment System (SEDS) provides a low-

cost facility for deploying tethered payloads in space. Among various

objectives, SEDS' first flight, scheduled in March °93, will assess the

capability of tethered platforms to carry out measurements in the upper

atmosphere. The performance of onboard instruments is seriously affected

by the payload's attitude dynamics. In this paper, SEDS' attitude dynamics

and stability are analitically and numerically analysed for the nominal

mission. It is shown that although a passive damper can be used to reduce

the amplitudes of the attitude angles, appropriate control techniques are

required for scientific instrumented platforms.



1. Introduction

The first mission of the Small Expendable-Tether Deployment System

(SEDS), scheduled for flight in March 1993, will be a precursor flight for

investigating the dynamics of long tethers in space. A 25 kg payload will be

deployed with 20 km-long tether from the second stage of a Delta II. At the

end of the deployment when the end-mass swings toward the local vertical

the tether is cut and payload and tether re-enter the atmosphere[I-3].

The instrumentation on board the payload[4] is mainly intended to collect

data on the dynamics of spaceborne tethers and the orientation of the end-

mass. These data, however, provide also the opportunity to assess the

performance of tethered payloads as scientific platforms for in-situ

measurements of the Earth's upper atmosphere and ionosphere[5]. To this

end payload attitude stability and control are necessary to maximize the

mission's scientific return[6].

Since in a tethered system the largest external torque is provided by the

tether tension, the attitude dynamics of tethered payloads has unique

features with respect to classical satellite configurations[7-10].

SEDS adopts a low-tension strategy atthe beginning of the deployment to

minimize the momentum exchange between deployer and payload during

major part of the deployment. Therefore attitude perturbations from other

sources and/or initial conditions could be significant.

This paper deals with the end-mass attitude dynamics and stability. To this

end a simplified analytical model of the payload attitude is developed under

the assumption of small angles. Then the satellite attitude model is

implemented in the numerical code that simulates SEDS ° deployment, to

analyze the dynamics of the end-mass during the nominal mission. The

results show that the initial phase of deployment is characterized by tumbling

of the end-mass. A passive damping device is proposed to limit the



amplitudes of the attitude angles and a numerical simulation is run to assess

its effectiveness.

2. Small attitude oscillations and stability

Fig.1 shows a schematic representation of the payload when (a) it is

attached to the Delta Second Stage and (b) during the deployment. The

payload is assumed to be a rigid body. The moments of inertia (I1,I2,I3), the

products (I_2,I13,I23), and the body coordinates of the tether attachment point

(x,,x:,x3) of SEDS-1 payload are listed in Table 1. In the following, in order

to simplify the analysis the body frame (1-2-3) is assumed to coincide with

the payload's principal axes.

The attitude dynamics is described considering the yaw (_,), pitch (13) and

roll ((z) angles as the Euler's angles of the body axes (1-2-3) with respect to

a right-handed reference frame, whose origin is at the payload's center of

mass, the z-axis coincides with the position vector and it is directed toward

the Earth, the y-axis is perpendicular to the orbital plane and the x-axis is

directed along the flight direction, (Fig.l). Due to the location of the tether

attachment point, the pitch angle has a non-zero mean value 130.

2. 1. Equations of motion

The equations of motion have been derived under

assumptions[1 1]:

- the payload's center of mass is in Keplerian circular orbit;

- the tether is assumed to be straight and unelastic;

- the gravitational potential is linearized;

- small attitude angles.

the following



Moreover, since the tether tension slightly changes during the first part of the

deployment[I], it will be considered constant (3 10 .2 N).

5. + fl=k,(1 + 3cos =13o)(_- (sinl3o)q" - [D.(I - k,) cosl3o]q - (D.=k,sinl3o)7 =

(Tx.,finl3o ]13 Tx= cosl30 (Tx, cosl3o_ (la)

._+(3n2k.cos_o)p=r x' cOS_o+x3s.,Po+ r=, cos/_o- _,si._o8+
" 12 12

-3n =k;sinflocosflo+(3n 2k;sm2,oo)fl
(lb)

[n(,- +n(,- k,)a+(m2k,si.pocO,po), =
COS,_o

where k_, k. and k 3 are the inertia ratios

(ic)

k, = I, - I3 -.648
I,

k,_ = I,- I3 -.406
I=

k3 = _ =. 328
13

(2)

D. the orbital angular velocity, T the tether tension, and 13o is given by the

solution of the following equation:

T x3 sinfl°T x, coSflo _ 3f22k:sinflo coSflo = 0 ( 3 )
12 I:

which is the equilibrium between the tension and gravity gradient torques

around the pitch axis.

Note that the pitch equation is decoupled from the roll and yaw equations.



2.2. Stability Ana/ysis

If we neglect the roll-yaw coupling due to the tether, after Laplace

transforming eqns. (la) and (lc) for null initial conditions, we obtain the

characteristic equation:

s4+[ (3kl c°s2 [3° + 3k3sin 213°c°s13° + 1 + k _k 3)_2- T x3 c°s_°I_ + T x_ sin13°]s2+I3

_:I_2klk3(l+ 3cos 2 j3o)+ 6_2klk3sin2j3 o cos_3 o k3T x3 cosj3 o- , (4)
L Il

=0

_2 1
Since -- <<--

13 11
in the previous equation, by applying the Routh-Hurwitz

criterion[12] the conditions of yaw-roll stability can be derived:

f22klk3(l + 3 cos: 13o) + 6_2klkssin21_ o cosl3o - k3T x3 cosl3°
I1

+ktT xlsin_3° > 0
I3

(5a)

(3k I cos 2 130+ 3k3sin213o cosl3 o + 1 + kxk3)f22 T x3 c°sl3° _-T xlsin13°
I 1 13 (5b)

2_ [_Q2klk3(] + 3 cos 213o) + 6_2klk3sin2#o cOS#o - k3T x3 cos13o + kl T xisinl3o
V Il I3

Eqns. (5) show that the end-mass attitude stability is a function of the inertia

ratios, the tether tension torque, and 13o. The roll-yaw stability region in k1- k3

plane is shown in figure 2. The shaded area is the locus of the values of k,

and k 3 that satisfy the roll-yaw stability condition. The angle 6 between k,-

axis and the line delimiting the stability area (Fig. 2) can be expressed as a

function of the location of the tether attachment point as:



(6)

Notice that as ×_ increases, the stability region moves toward the right half

plane as 5 goes to ---.
2

The Pitch stability condition is:

3f22k: eosflo -3f2:k:sin:flo - TX3 coSflo + TX---_smflo > 0
1: 1:

(7)

Under the assumption of small angles, conditions (5) and (7) are satisfied

and the payload attitude dynamics is then stable.

3. Numerical Model

The attitude dynamics of SEDS' end mass has been simulated numerically.

Both end-platforms and tether are modelled as lumped masses connected by

massless spring-dashpots systems[13]. The motion of the system is

described with respect to an orbiting reference frame (ORF) that rotates at

constant orbital rate _0 and radius Ro. The origin of this frame coincides

with the initial position of the system center of mass. The Xo-aXis is along

ORF velocity vector, the Zo-aXis is along the local vertical toward the Earth,

and the yo-aXis completes the right-handed reference frame[13]. The

external perturbations considered in this analysis are the tether tension, the

gravitational force, including the second zonal harmonic of the gravity field,

and the aerodynamic forces.

The payload attitude dynamics is computed by integrating the Kinematics

and Euler equations as follows:



= si-EO|coswsin,9
L-sinwcos8

cos ol[ ,1-sin_usin8 0 o2
-cos_cos8 sin,9 c03

(8)

&2

&3

= 1 -l N]+I -_ N:

where I is the inertia matrix[12], N, the external torques and

(9)

c0,,co2,co3)} [12-13 -I]: 1,3 -Iz3 0

""[_3(c°,,c°=,°)3)J L -I,3 I n Ii-I 2 0 0

CD2 (-0 3
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2 2

0")2 --(Dl

(10)

The unknowns in the above equations are the Euler's angles (q_,8, W) of the

body axes (1-2-3) with respect to an inertial reference frame (IRF) X,Y,Z and

the body-frame components of the inertial angular velocity vector (o_,_=,o_3).

The Euler's angles are defined as a 3-1-3 rotation sequence of the body

frame with respect to IRF, whose origin is located at the Earth's center with

the X axis pointed toward the Vernal Equinox, the Z axis pointed toward the

North pole and the Y axis completes the right handed reference frame.

The torques are computed taking into account the tether visco-elastic force

and the gravity gradient. The payload yaw, pitch and roll angles are then

evaluated by using transformation matrices[7].

4. Numerical Results

The simulation starts with the payload deployment from Delta second stage

at the apogee (716 km) of an orbit with inclination of 34 deg and perigee of



202 km. At the beginning of the deployment the payload is ejected with an

initial velocity of about 1.6 m/s.

The tension at the deployer, the deployed length and the deployment rate

are shown in Fig.3.

Payload pitch, roll and yaw angles are shown in Figs. 4-6. Large attitude

oscillations start as soon as the payload is ejected. Moreover, tumbling is

observable around roll and yaw axes. From our previous analysis we can

deduce that this dynamics is mainly caused by the initial phase of the

deployment. The low-tension deployment is unable to provide enough

restoring torque. Despite the increasing tension payload tumbling around roll

and yaw axes is observable throughout the whole deployment.

5. Tumbling analysis

In this section we analyze the influence of the initial conditions (see Tab. 2)

on the payload tumbling.

With reference to Fig. 7, we limit our analysis to the payload's rotation in the

(x-z) plane. Since the variation of the payload's rotational energy must be

balanced out by the work done by the external torques, we can write:

= - Eo.,o
t o

(11)

"T

where lVl represents the external torques, e the angular rate in the (x-z)

plane and Ec.,o and E0., the payload rotational energy at to and t,

respectively. In our case eq. (11) becomes:

_(02 - 02o) : Tb[cos0,sin0 + (l- cos0)sinO,] (12)

where (30 is the initial angular rate, and 01 and b (Fig. 7) are given by:



b = %/x22+ x32 (I3a)

61 = sin -l
Ix21 1= 9.3(deg)

(13b)

By substituting eqs. (13)in eq. (12)we obtain:

'3P

6= = _)o2 - 2_[I x31sine+Ix=I(cosO- 1)] (14)

By assuming d0 = O, the maximum amplitude of the payload rotation can be

computed by setting 0 = O. Then we have:

O= _ - 2e_ (15)

Therefore, in our case the initial value of O, determined by the initial

conditions of the deployment and the tether tension, causes large attitude

oscillations of the payload. Furthermore, this analysis did not take into

account the roll-yaw coupling which also affects the amplitudes of the

payload attitude angles.

6. Attitude Stabilization

Our analysis shows that some attitude stabilization must be introduced in

order to avoid tumbling. Considering the low-tension deployment strategy

and the payload design, a displacement of the tether attachment point

appears to be the simplest solution to adopt. Since the payload tumbling is

limited to the roll and yaw axes (1 and 3 axes, respectively), the tether

attachment point can be moved along the 2-axis to provide the required

stabilization by increasing the tether restoring torque. With reference to fig.7,

by applying the work and energy principle, the following expression of x2 can

be obtained:



( I,(6 -0otx_l=-
(1--,.,.,_o),,Ix31 XT (1-cosO)

(16)

Figure 8 shows Jx2Jfor different amplitudes of the roll angle given an initial

roll rate ( 6o=2.7 deg/s). Considering the physical dimensions of the end

mass an appendix can be used to provide the desidered displacement of the

tether attachment point toward the negative direction of the pitch axis.

The numerical analysis shows that the solution is effective in stabilizing the

satellite around both roll and yaw axes.

In the following simulation we have chosen Jx2J=llcm which gives a roll

amplitude of about 120 deg. Given the actual configuration of the end mass

the length of the appendix is 5 cm.

Figures 9 and 10 show the roll and yaw angles of the payload when the

appendix is introduced. Due to the increased restoring torque, no more

tumbling is observable around roll and yaw axes except at the end of the

deployment when the tether goes slack. This can be avoided by controlling

the tension in order to bring the payload to a smoother stop.

The displacement of the tether attachment point along the body 2-axis

causes the roll angle to oscillate around a large mean value (Fig. 9) wich

actually limits the length of the appendix. Therefore, although the appendix

is effective in avoiding the payload tumbling, it does not satisfy more

stringent attitude requirements.

7.Conclusions

The attitude dynamics and stability of the payload of the Small Expendable

Tether Deployment System have been analytically and numerically studied.

The analysis has considered the first nominal mission as reference case.

l0



Our study showed that the end-mass attitude stability is strongly affected by

the initial conditions of the deployment: tumbling around roll and yaw axes

starts as soon as the payload is ejected from Delta Second Stage.

The introduction of a rigid appendix at the tether attachment point is effective

in stabilizing the payload attitude dynamics. Nevertheless, if SEDS is used to

deploy platforms with scientific instruments only very long appendices allow

more stringent attitude requirements to be satisfied. Therefore, considering

that the payload's reduced dimensions cannot accomodate inertia wheels

and/or a mobile tether attachment point, different control techniques must be

considered; such as:

- rigid appendices and viscous dampers;

- gas jets;

- drag stabilization.

The authors will focus their research on these issues by refining the attitude

dynamics model.
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Figure and Table captions

Fig.1. Schematic representation of SEDS's payload when attached to Delta

Second Stage (a) and during deployment (b).

Fig.2. Roll-yaw stability region.

Fig.3. Tether tension, length and length rate during SEDS deployment.

Fig.4. Payload pitch angle versus time.

Fig.5. Payload roll angle versus time.

Fig.6. Payload yaw angle versus time.

Fig.7. Schematic of payload's roll rotation.

Fig.8. Displacement of tether attachment point on pitch axis versus roll angle.

Fig.9. Payload's roll angle versus time with appendix.

Fig.10. Payload's yaw angle versus time with appendix.

Tab.l.Payload inertia characteristics and body coordinates of tether

attachment point.

Tab.2. Deployment initial conditions.

]4



Tab.1 Payload inertia characteristics and body coordinates of tether

attachment point.

Il(kg- m:)

I: C)

I_(")

1l:(")

II3(")

I:_C)

×,(m)

_:(")

×,(")

.372

.436

.195

.005

-.011

.022

-.184

-.027

-.165



Tab.2 Deployment initial conditions

angular

rates (deg/s) :

£01

£03

ejection

velocity(m/s)

2.701

0.120

-3.168

1.6
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10.1 Introduction

The estimation of the SEDS- 1 end-mass orientation has been a major undertaking of

our investigation. The payload was equipped with a three-axis magnetometer and three-axis

tensiometer to measure the orientation with respect to the geomagnetic field and the line

connecting the two end-mass, respectively.

As it will be shown in the following, the use of the load cells as attitude sensor and

the lack of a third attitude sensor (e.g. horizon sensor, sun sensor, gyro package, etc.) is

the limiting factor in getting a complete picture of the whole SEDS-1 mission as well as on

the accuracy of estimated results. The lack of redundancy also puts a limit on the

observations. Namely, if the tether was slack or the tether line was parallel to the Earth'

magnetic filed the end-mass orientation could not be computed.

The accuracy of attitude measurements is affected by the following sources of error:

- Error in the orbital state of the payload affecting inertial orientation of the line

connecting the two end-masses and to a lesser degree computation of the Earth's

magnetic field

- Error due to the natural angular displacement from the line connecting the two

end-masses due to the tether bowing. This is particularly true when the tension is

low, or the payload goes through phases of slack and taut tether.

Also, the tether curvature is not an observable with the SEDS instrumentation.

The direction of the line connecting the end-masses is strictly dependent on our ability

in simulating SEDS-I deployment and whenever the tether is not slack. Therefore we have

limited our analysis to the first 4604 seconds of the mission before the load cells went out

of range for the first time. After the brake was applied to the last hundred meters of tether,

the end-mass reached an abrupt stop going through phases of bouncing before being cut

and reentering into the atmosphere. The accuracy of our simulations could be checked only

during the deployment since we have the data of the turn counter to produce length and

length rate time profiles.

Another problem that was encountered was that the magnetometer modulus showed a

high frequency (1 to 2 minutes) variation around the reference profile (e.g. Earth magnetic

field model), as shown in figure 10.1. After several hypotheses SEDS IWG suggested that
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this variationcould becausedby a dipole moment inside the end-mass even though the

cause for the bias is not clear yet. Moreover from preliminary discussions it seems that the

same kind of problem has affected SEDS-2 end-mass magnetometer. To the moment of this

writing there is no direct evidence of the cause of the bias, however we hope to clarify this

issue soon.

Therefore we treated the magnetometer data as affected by a bias and we applied our

least-square bias estimator obtaining the following results

Bias X = 31.8 mGauss Bias Y =-34.04 mGauss Bias Z= -43.17 mGauss

Bias Modulus = 63.5 mGauss

The modulus of the magnetometer signal corrected in this way is shown in figure 10.2

10.2 Data Check and Validation

In this scenario it became clear to us that a series of tests to validate and check the

flight data was as important as estimating the attitude itself. One straightforward test was to

compare the signal of the load cells to the accelerometers, the major difference being the

rotational acceleration tem_s. We carried out this test by Fourier transforming the load cells

and accelerometers data and then comparing the harmonic content. Since, the data were

time-varying we divided the time series in short subsets and then applied the FFT routine.

Another test we run consisted in comparing the scalar products of the reference and

the measured unit vectors. Within the limitations of our hypotheses on the measurement

and modeling errors the angle between the reference fields should be similar to the angle

subtended by the measured fields. The result of this test is shown in figure 10.3. The

general agreement is quite evident. The oscillations between 1000 and 300 seconds as well

as the offset after 4000 seconds are mainly due to the angular displacement between the

tangent to the tether and the line connecting the two end-platforms. Moreover we noticed

that some high frequency oscillations of the magnetometer original data were not

completely removed even after being treated for a bias.

Unfortunately, there was no straightforward test to compare the magnetometer output

with. To this end we computed the angular body rates using the load cells and

magnetometer data and then computed the angular accelerations. These acceleration can

then be compared to the signal of the accelerometers. Details of the algorithms are given in
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theQuarterly Report#33/34.We limit ourselvesto showthe angularrates,theangular
accelerationsandtheresidualsfi givenby:

= A__-T_/M-Ac- At

where A, T, M are the accelerometer signal, the load cells signal and the EMP mass

respectively and A__cand At are the estimated centrifugal and tangential accelerations.

This test, however, has some limitations, namely:

A) The only external perturbation acting upon the end mass is the tether tension. This

is true at the beginning and at the end of the deployment when the end-mass is at apogee.

B) The end-mass rotates around its center of mass. This is true when the tether

tension is low.

C) The angular derivatives are computed using the Euler equations assuming that the

end-mass axis are principal axes. This limitation, though, can be removed easily in a

second order of approximation by introducing the other inertia terms.

The angular rates are shown in figure 10.4(a-c) and the comparison between flight

angular accelerations and estimated accelerations are shown in figure 10.5(a-c). The

residuals fi are shown in figure 10.6(a-c). The agreement between flight and estimated

angular acceleration is generally good and, as expected, the match is poor at the beginning

after ejection and when the tension ramps up. The rms values of the residuals fi for the

whole data set are:

_Sx= 0.00017 m/s 2 (-- 0.0044 N)

_Sy= 0.00029 m/s 2 (= 0.0075 N)

5z = 0.00025 m/s 2 (= 0.0065 N)

The maximum residual values are at the end of the deployment and are of the order of

0.001 m/s 2.

This test is also highly sensitive to the load cells data. While processing and

calibrating the flight data NASA/LaRC noticed that the load cells were affected by a time

varying bias depending on the temperature. As a matter of fact, when we processed the data

for the first time we noticed that the residuals followed closely the temperature variation.
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RayRhewof NASA/LaRCprovideduswith animprovedversionof the loadcellsdataand

thefinal resultsareshownin thisreport.

10.3 Covariance Analysis

By assumingthatthemagnetometerdatawereaffectedonly bya bias,theaccuracyof
the end-massorientation wasmostly affectedby the load cells performanceas angular

sensor. Figures 10.7 and 10.8 show the angular accuracy of the load cells and

magnetometer,respectively.As expectedthe angularaccuracyof the load cells plays a

major role duringmostof thedeploymentsincethetensionis low. As soonasthetension
increasestheaccuracy(1 _) improves.Figure 10.9showstheaccuracyin estimatingthe

Euleranglesasgivenbythecovarianceanalysis.

10.4 End-mass Orientation

The orientation of the end-mass was estimated with the QUEST and TRIAD

algorithms. Even though the covariance analysis did not show a good accuracy in the

estimation, we still tried through physical reasoning to get the picture of the end-mass

attitude dynamics and orientation's time-history.

Figure 10.10 shows the angle between load cells x and y as compared to the angle in

the x-y plane of the tether attachment point. As the figure shows the end-mass tends to

align itself with the tether line. As the time progresses and the tension increases the

amplitudes of the oscillations decrease. The other interesting result is that, by looking at the

magnetometer data, the three components show a peak-to-peak oscillation at the same

frequency, as shown for a short portion of the deployment in Figure 10.11. From a FFT

analysis this frequency is "seen" only by the magnetometer and it is the same frequency that

showed up in the original magnetometer modulus. Provided that the magnetometer was

only affected by the dipole moment, we can assume that the end-mass was spinning

throughout the whole deployment around the tether. Since it was an almost constant spin it

did not appear in the accelerometer being the DC value and it did not appear in the load cells

signal because it could be not detected. We checked this possibility with John Glaese and

after some discussions and numerical simulations we agreed that this scenario was

plausible. It was also emphasized that the last part of the tether, the "shrink-wrap" section

played a major role in damping out the oscillations perpendicular to the tether line. On the

other end, rotations about the tether line cannot be damped since there is no restoring torque

and it seems plausible that the end-mass initial energy, picked up during ejection, spilled

into that degree of freedom.
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Even though it is hard to visualize the orientation of a body, for the sake of

completeness we are including the three plots of the Euler angles in figure 10.12(a-c). The

Euler representation assumes a 3-1-3 rotation sequence of the body frame with respect to

the inertial frame. The end-mass spinning is quite evident. As expected, QUEST and

TRIAD produced the same results.

10.5 Data Analysis and Validation: An Example

Physical considerations have helped us in the analysis and validation of SEDS- 1 data.

In the following we will give an example of the type of analysis we have done during the

course of the study.

The data set under consideration spans from 3580 to 4092 seconds. Load cells and

accelerometers are averaged at 1 second to compare their signal with the magnetometer.

Figures 10.13(a-b) and 10.14(a-b) show the comparison of the FFT analysis of the X

and Z components of the load cells and accelerometer and load cells and magnetometer,

respectively. The three FFT are shown in the same scale being divided by their highest

peak. The load cell and acceterometer comparison is quite direct since both measure the

same dynamics. The agreement is quite evident on both axis. We also computed the

theoretical frequencies of the tether system as shown in figure 10.15 versus tether length

for the data set under consideration. The flight data show that the lateral frequencies and the

pitch frequency are excited and are very close to the theoretical values. We call pitch the

motion of a tethered platform around the z-axis (.= out of plane). The z component show

two frequencies at about 0.7 and 0.9 Hz that appear also in the rotation rates. These are

typical attitude frequencies but their theoretical derivation is not simple since in this case the

small angles assumption is not valid. The FFT also show that the load cells worked well as

strain sensors.

The comparison between load cells and magnetometer is not as direct as the previous

one. Nonetheless both instruments measure the same rates of variation with respect to their

respective reference fields. Therefore the frequency content of the signal is what matters not

the peak of the harmonic. Both instrument show the same frequencies, the major and only

difference being at the spin rate frequency in the magnetometer.
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10.6 Conclusions

The analysis of SEDS-1 end-mass orientation has given interesting results even

though with a low accuracy. The load cells have provided excellent results as strain sensors

but their use as angular sensors is not very accurate. Too many assumptions on the

orientation of the tether line have degraded the covariance of the estimated angles. The

magnetometer, on the other hand, has shown an almost constant frequency suggesting a

spin of the end-mass around the tether line. Unfortunately this spin cannot be checked for

with other instruments.

We have carried a series of tests and computed the angular rates and the angular

accelerations of the end-mass. All the tests agree, within our modeling and intruments'

errors.

The final result of the estimation has a physical sense and confirms that, as expected,

the attitude dynamics of SEDS-1 is a very complicated process. We hope that SEDS-2

flight data will provide us with some more data to answer some questions still open.

10.7 Pulse Propagation Analysis

Tethered systems are subject to disturbances at the end masses and, in exceptional

circumstances such as a micrometeorite impact, in the body of the tether itself. Any such

disturbance will excite vibratory modes of the system. If the disturbance is relatively brief,

it can be profitable to think of it as generating an impulse or pulse propagating along the

tether which can impact on the other end mass and be measured by instrumentation there.

Both transverse (string like) and axial (column like) waves in the tether have similar formal

descriptions, although transverse waves have little damping and travel much slower than

axial waves. We concentrate on the transmission of axial disturbances.

Three attachments follow which summarize our work on this topic.

Paper One considers a system with one large end-mass (idealized as a fixed end) at

which the perturbation takes place and a smaller end-mass whose response is desired. The

tether is a uniform viscoelastic. Both the frequency and impulse response functions are

given, the latter in temas of an inverse Laplace transform. An exact solution is given for the

zero damping case, and numerical results plotted which include damping.
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PaperTwo (anappendixfrom QuarterlyReport# 26)discussesamodel in whichan

impulsepropagatesintoasemi-infiniteviscoelastictetherwith nogravitygradientforceand

nosecondaryendmass.NumericalresultsarepresentedusingaLaplaceformalism.

Paper Three presentsdata from pulses generatedas three massenhancements

embeddedin the SEDS-1tetherweredeployed. The broadeningof the pulseis clearly

seen,andis probablydueto tetherdamping.

10.8 Fit of Simulation to Flight Data

The program MASTERDEP0 was used to perform a number of simulations of the

SEDS-1 deployment. Parameters were varied and the end-mass trajectory compared to

flight length and length-rate data. The best "fit" was judged visually and is presented here;

for more details see Quarterly Report #33/34.

The deployer orbital parameters were provided by McDonnell-Douglas and John

Glaese of Control Dynamics and were not varied.

The end-mass properties and initial conditions were also nominal, except that a slight

increase in the ejection velocity (from 1.60 to 1.62 m/s, well within the expected range)

gave a better fit to the tether velocity in the first part of deployment.

A tension control law provided by Joe Carroll was used:

TDep = [TMin + J r A <: (dl/dt) 2 ] KBr KEx

KBr = exp(Kl_ )

KEx = exp(K2 00

where:

TMin = Minimum Deploying Tension (constant)

J = Inertia Multiplier (constant, dimensionless)

A = Relative ratio (dimensionless) = 1 - Asol (L/Lmax)

L = Instantaneous length

Lmax = Maximum length to be deployed = 19940 m

Asol = constant

t: = Constant

p = Linear density

dl/dt = Deployment rate
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x = Brake turns (a function of deployed length)

o_= Angle between tether exit guide and tether

K1 and K2 = friction coefficients = constants

The brake is activated when about 18900 m of tether are deployed. The exit angle

term influences the deployment for the first 3675 sec of deployment, then the deployer was

aligned with the tether.

Numerous simulations led us to adopt brake parameters somewhat different from the

nominal ones in the Design Reference Mission:

Nominal Final Fit

TMin 0.028N 0.035N

J 3 5

Asol 0.96 0.942

e 0.8 0.61

K1, K2 0.18 0.18

Figure 10.16a shows the tether deployed length compared to the flight data. The

deployment at the beginning is slower. The deployed length is about 200 m shorter than the

flight data. From perigee (-2800 s) up to 4000 seconds the fit is very satisfactory.

Thereafter the numerical integration goes faster than the data reaching the final length of

19940 m 17 seconds earlier.

Figure 10.16b shows the deployment rate as compared to the flight data. Note that

the fit is not very accurate at the beginning of the deployment yielding a maximum

difference of 0.2 m/s lower than the data. The flight data show a linear decay of the velocity

with respect to time. This also gives an error in the acceleration produced by the tension

(see Eqs. 1). After perigee the numerical integration gives a faster deployment velocity

(-0.3 m/s). Other measured quantities (magnetometer and load cell data) also show close

agreement with the simulation; see Quarterly Report #33/34.
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ABSTRACT

In a number of possible tether applications, e.g. grav-

ity g-adiometry and a variable gravity facility, isolation of

the instrumented platform from disturbances on the base

(Shuttle or Space Station) is critical. The tether is some

times spoken of as a "low pass filter", implying that only

the effects of the overall spring-mass system are significant.

However, we have analyzed the effect of longitudinal im-

pulses on the satellite when a continuum tether (subject to

viscoelastic damping and gravity gradient force) is included,

and find that in typical systems the effects of propagating

waves will be substantial. The results are applied to the

first two TSS missions and a variable gravity facility.

This is not the whole story. We demonstrate below

that, taking the continuum nature of the tether into ac-

count, the sharp onset of a forcing impulse at the Shuttle

end is perceived on board the satellite. The magnitude of

the satellite response is diminished from that of the forcing

impulse, and the response exhibits a broadened exponential

tailoff; these are due, however, primarily to the coupling be-

tween the tether and the satellite and its influence on an

impinging impulsive wave, and not on the whole system as

in the spring-mass model. The full impulse response func-

tion can be quite complex, showing repeated impulses as the

tether wave bounces back and forth between the satellite

and Shuttle, having a different shape at each impingement

on the satellite.

I. Introduction II. Equations of Motion

Certain platforms which have been proposed for deploy-

ment on gravity gradient stabilized tethers require isolation

from dynamical disturbances upon their base (Shuttle or

Space Station), which will he subject to a variety of pertur-

bations from human and other activities. Such platforms

include gravity gradiometers for determining the Earth's

gravity field, platforms with sensitive pointing requirements

and variable gravity facilities tethered to the Space Station.

On TSS1 we hope to observe the effects of prescribed im-

pulses such as firing of a Shuttle thruster, sudden applica-

tion of the brakes on the deployer reel, or impact of a crew

member on the Shuttle structure.

Apparently based on the idealization of the tether as

a massless spring, it is sometimes claimed I that the tether

acts as a _low pass filter _ of dynamic noise. This claim is

then used to infer either that there will be no problem with

high frequency dynamic interference on the above men-

tioned dynamic platforms, or that in the case of planned

TSS1 experiments, impulsive perturbations will never be

observed on the satellite.

This work was partially supported by contracts NAS 8-
36810 and NAS 8-36606.

t Assistant Professor, Electrical, Computer & Systems En-

gineering

The physical system under consideration consists of (a)

a uniform, viscoelastic tether of natural length L, (b) a

point mass satellite attached to one end whose response

we desire, and (c) an attachment at the other end whose

motion we will specify but which is otherwise fixed, i.e.

which provides a forcing boundary condition. The fixed

end is in circular orbit around the Earth, and the system is

small enough that the linear approximation to the gravity

gradient along the local vertical may be used:

Z

Fg_ = 3GMm--
Rorbtt 3

= gggzrn ( 1)

where x is the vertical distance from the orbiting reference

point ("fixed" attachment), m is the satellite mass, and M

is the Earth's mass. The coefficient is conveniently com-

puted as ggg = 3g/Rorbit, for a low orbit with g_10 m s -2

and Ro,blt_6.5 x 10 _ m, we get ggg_0.5 × 10 -s s -_.

We consider only the gravity gradient force (exclude

air drag and Coriolis forces), and only longitudinal tether

motion and a point mass (excluding transverse "string" mo-

tions and satellite attitude variations).

Let _ be the natural coordinate along the string, from

0 at the fixed end to L at the satellite. (We shall soon scale

to dimensionless variables, and - denotes unscaled physical

variables_) The system starts in initial hanging equlibrium.

Let fi(l,t) denote displacement from this equilibrium. The



usualmethodof balancing forces on mass elements and tak-

ing limits leads to

- P a -_

_u H = {EA + E A_}u_ + ggg_fi, 0 < "_< L,

mfi H = -{EA + E'A_}fi_ _- mgggfi, -£ = L (2)

where _ is the tether mass per unit length, and EA and

ErA are the elastic and damping coefficients. The bound-

ary condition at I = 0 depends on whether we are trying to

compute the impulse response function (IRF, time profile

of response to a single impulse) or frequency response func-

tion (FRF, strength of steady state response to a sinusoidal

forcing function, as a function of frequency). The two cases

are

IRF: fi(0, i) = 6(i lFRF: fi(0, t) = e'_' (3)

Scale these equations by

where c =

the tether.

t = l/L (4)
t = t/(L/c)

is the speed of longitudinal waves in

Then with u(_,t) fi(Lt, Lt= %- ), we get

l utt = I1 + b_t!uee * 7u, 0 < t < 1,

a"
Utt = -a!l + b_ilut + "_u, t = 1,

IRF: u(0, t) = L-_(t)

FRF: u(O,t) = e '_'

(5)

where w = &L. The dimensionless parameters, a, b, and

"_ are defined by a = EAL/mc 2 = _L/m, i.e. the ratio of

tether mass to satellite mass, b : E'c/EL = E'A/#Le =

_ and L2 g ab/L_ In practice, we solve
%¢EA,' "7 = ggg_'_. = gg EA"

the dimensionless IRF problem for a unit dimensionless im-

pulse and scale the result to the dimensioned response; di-

mensionless 1RF's shown are for unit impulse in (5).

The damping term (b_) in the t = 1 boundary condi-

tion of (5) is important for some purposes; it is omitted in

at least one previous paper 2. Tests performed without this

term show that the overall damping (in the spring-mass

mode) is substantially reduced; the effect on the character
of the response to individual impulses (e.#. rise times) is

less pronounced.

Note that (5) is a linear system. Most practical con-
cerns deal with acceleration and not displacement a_ such.

The derivative is a linear operator; hence, IRF's and FRF's

computed for (5) apply equally well if interpreted as the

IRF or FRF of acceleration response to an acceleration in-

put.

We consider three systems in this paper: the first and

second tethered satellite missions, TSS1 and TSS2; and a

variable gravity facility, VG. Typical parameters are shown

in Table I, with the VG at 1 km deployment. (Note that the

VG is a much more complicated system, with three tethers

and four massess; we consider only the Space-Station/te-

ther/facility portion.) Except for TSS1, these values should

be taken as quite uncertain; even in TSS1 the damping E*A

is poorly known.

III. FRF Solution

We solve (5) with the FRF boundary condition by at-

tempting a steady state solution

u(e,t) = R(t)e '_t, (6)

where complex R allows for a phase shift along the tether.

Substitution produces an ordinary differential equation

which is readily solved. The FRF is then just R(1) and
is found to be

1
FRF - (7)

cos_- _sin_

where

/-1+ q/w 2

= • (8)

Note that this is for a displacement forcing function and

measured displacement output. In a proposed experiment

for TSS1, the deployer rell will oscillate with known dis-

placement amplitude and acceleration response will be mea-

sured. The FRF for this system is

FRFD^ = -w2FRF (9)

Both forms of FRF are shown in Figures 1 and 2 for the

TSS1 system with nominal damping. A comparison FRF

for the equivalent spring-mass system is shown in each plot

(the lower curve with only one peak). Even for the direct

FRF there is substantial response in the first few modes,

while for the acceleration response these modes strongly

dominate the spring-mass mode.

IV. IRF Solution by Laplace Transform

The derivation will be presented in a further paper s,

but by taking the Laplace transform of (5) with respect to

time, we obtain a soluble set of ordinary differential equa-

tions in space with the Laplace domain variable s as a pa-

rameter. The impulse response function is then

4
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where

V. Limit Case, Exact Solution

If there is no damping and no gravity gradient, we ex-

pect an initial pulse to propagate distortion free through

the tether. By matching ingoing and outgoing waves at the

satellite end, the IRF can be found3:

IRF = 2e-tt'/r (12)

1(13)

where
m

is the decay constant after an initial sharp rise to 2/r at
= 0, which is taken as the momenl the wave reaches the

satellite, r is tabulated in Table I. The reflected part of the

wave is also computed, its reflection from the Shuttle, and

a more complicated response is found on the satellite due

to this second, spread out, impulse; this process repeats

indefinitely to give 3, in physical variables,

km_!

IRF = Z uk(t) (14)
k=]

1

IRF = /'-'{cosh_,-_ _sinhv } (10) where

=_V 1,b_ (11)

kmo_ = [_(t/ + 1)] (15)

2k- 2k- 1,_ , _({_2.-_
llqktt-t, tt --LTc )/r}e

_77 )/r
L/e

(16)

o

_k(_)= _H(_- --

and the polynomials qk are defined by recursion

/oqk*l(_ ¢) = qk(() -- 2 qk(rl)dr I (17)

with q_(1) = 1. ;. in (15) is the greatest integer function

and H(*) in (16) is the Heavyside function.

In the case _t = b = 0 an exact inverse has been found,

evaluable with modest effort at any time. Otherwise, it

appears that some form of numerical method must be used.

TABLE I

#

c

EA

E'A

L

gg9

a

b

?

L/c

7

TSS1 TSS2 VG

0.82 x 10 -2 kg m -1 0.49 x 10 -2 0.49 × 10 -2

3.2 x 10 a m s -1 3.2 x 10 a 3.2 x 103

8.4 X 10 4 kg m s -2 5.0 x 10 4 5.0 x 10 4

200kg m s -I 100 100

550kg 550 5 x 103

2 × 104 m 10 ..5 103

0.5 x 10 -2 s -_ 0.5 x 10 -2 0.5 x 10 -2

0.30 0.89 10 -3

0.4 x 10 -3 0.6 x 10 -4 0.6 × 10 -2

0.2 x 10 -s 0.5 x 10 -_ 0.5 x 10 -4

6.25 s 31 0.31

21 s 35 320



Thisformof the solution (14)- (17) can also be derived 3

directly from (10) with b = "r = O, and numerical evalua-

tions, though di_cult, confirm the result also. Thus, in a

sense, this superposition of reflected pulses contains all the

physics of the problem.

If we scale this result as in (4), the decay constant be-

comes 1,/a and the pulses initiate at t = 1,3,5,.... Cases

with a broad response (a = 0.3} and a narrow response

(a = 3.0) are shown in Figure 3. Figure 4 shows the un-

damped IRF equivalent to TS$1, along with the equivalent

spring-mass IRF. Note the increasing phase lag relative to

the spring-mass IRF.

VI. Numerical Inversions

The rather elegant form of (14) - (17) does not seem to

be easily obtained when _r or b is non-zero. We are reduced

to some form of numerical solution.

The approach we have adopted is to use a routine from

the IMSL 4 library. A program was prepared which eva]-

uates (10) along with (14) and the equivalent spring-mass

IRF. If we are near a sharp rise, as in the cases with zero

or small damping, the routine is not robust: numerical

overflows, oscillations, and failure due to excessive function

evaluations are experienced. One case (Figure 12, below)

even appears to have failed without issuing a warning.

Evaluation of (10) by the integral inversion formula via

the residue theorem and a Bromwich contour produces an

infinite sum of residues at the poles of (10). This has been

done in the "_ = b = 0 case, and the series converges slowly.

If _, or b is non-zero, (11) introduces complications in the

function domain and in the choice of appropriate contour;

this case has not yet been fully solved.

Using the IMSL routine we have performed some stud-

ies of the effects of damping and gravity gradient remaining

in dimensionless variables (a = 0.3 being used throughout),

and have evaluated IRF's for the three systems in Table I.

Effects of Gravity Gradient

Gravity gradient introduces no energy dissipation, i.e.

no damping, and the initial rise is as steep as for ? = O,

to the resolution of the numerical computations (Figure 5).

Note the "ringing _ in the numerically computed solution,

"_ = 0.3; this is an artifact, and occurs if the "/ = 0 case is

treated numerically.

Gravity gradient has a substantial effect on the longer

time scale response as shown in Figure 6. (The finite rise

times seen are due to the coarse resolution; numerical so-

lution proved difficult near the rises.)

Effects of Damping

A comparison of damped and undamped solutions for

TSS1 is shown in Figure 7. Damping is ten times nomi-

nal for clarity; however, there is reason to expect higher

damping in the space environment due to increased friction

between fibers, and in any case the nominal figure for damp-

ing is very uncertain. Note the progressive broadening of

the rise profiles in successive pulses.

Figure 8 demonstrates the effect of damping on the rise

time of the initial pulse. Note the large effect possible from
a small b.

Figure 9 compares a heavily damped IRF with the spring.

mass equivalent. They are very similar, with a slight phase
shift.

-2
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TIME

__ =a 03 .._
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Figure 3 - Effect of parameter a on the IRF in undamped

case,'7----b = O.
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Figure 4 - Undamped and spring-mass IRF's for TSS1.
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Figure 7 - Effect of damping in TSS1.

Case Studies

The IRF's for the three cases in Table I are shown in

Figures 10, 11, and 12. The cases are TSS1, TSS2, and a

variable gravity facility. Higher damping than nominal was
used in the first two cases to facilitate numerical solution.

The sharper appearance of TSS2 as compared to TSSI

is due more to the longer interval between pulses (due

to longer L/c) than to increased sharpness of individual

pulses.

The very different appearance of the variable gravity

facility case results from the larger satellite mass and the

short tether. Almost all the pulse energy is reflected, and

the relaxation time for the mass is large. Thus, we see a

series of essentially indentical pulses which rise only. The

linear section above t = 4 is probably a numerical artifact.

VII. Future Investigation

The only immediate prospect for physical verification
of these results is on TSSI and TSS2, which will fly ac-

celerometers on the satellites. Perturbations designed to

provide impulses have been requested and a variety of nor-

mally occuring operations will also produce such impulses.

A ground test of impulse response would also seem quite

feasible and worthwhile.

Within the model and methods we have used here. sev-

eral lines of work are open. The Laplace inversion technique

could be made more robust. Approximate results for small

b and ",I could be attempted via the Bromwich integral or a

method similar to that used to get an exact inverse when

b = ? = 0. The integral inversion method needs to be ana-

lyzed properly when b or _r is non-zero. The resulting series

of residues may be capabel of convergence enhancement.

r..
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Figure 6 - Long scale influence of gravity gradients.
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Figure 8 - Effect of damping on initial rise time.
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The model itself could be extended using essentially

the same methods. A finite mass Shuttle could be readily

included, as would a flexible deployment boom. Attitude

dynamics of the satellite will be more difficult: the resulting

equations are non-linear {in the boundary condition) even

for small angles. Multi-tether systems could also be solved,

providing a more realistic mode] for the variable gravity

facility.
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TIME

Figure 10 - TSS1 impulse response function.
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VISCOELASTIC DAMPING OF A PULSE IN AN UNTERMINATED TETHER

DEFINITION OF THE PROBLEM

The mathematical problem describing a tension pulse propagating

into a tether terminated with a finite mass is very difficult,

even when damping or gravity gradient forces are not considered

(Gullahorn and Hohlfeld, 1987 and in preparation, provide a

closed form solution). Attempting to solve for the broadening of

a pulse due to damping seems formidable when the complication of

the terminating mass is included.

The problem becomes more tractable when the terminating mass is

removed and the pulse is allowed to propagate into a

(semi)infinite tether, with an end condition only at the

originating end (assumed to be a relatively large deployer).

Ignoring the end mass should still give a good idea of the forces

on that mass due to the initial pulse (the reflected pulses,

though, may still be important); perhaps in future work, given

the solution to the unterminated problem, we may be able to solve

the problem with end mass by appropriately reflecting that

solution. We also neglect gravity gradient forces; some

numerical work with the end mass case seems to indicate that the

gravity gradient does not have a smoothing or pulse broadening

effect. Also, gravity gradient forces in an infinite tether do

not make physical sense: Once a certain length has been

exceeded, the force (proportional to tether length) causes the

tether to extend indefinitely.

The equations describing tether motion are the same whether the

variable being considered is the tension, the position, the

acceleration, etc., since these are all related by linear

differential operators and the equations are also linear.

Because it is the most primitive physical variable, the one

typically used to derive the equations, we shall work with the

tether position. To be more precise, we imagine the tether fixed

at one end so that we may completely control that end's motion,

and extending to infinity in a straight line; all tether motion

is confined to that line, i.e. is along the axis of the tether,

with no lateral or 'string' motion. (In a more complete

treatment, this axial or 'column' motion is easily decoupled from

the string motion and for small displacements they may be treated

independently.) We suppose that the tether is initially at rest

in an equilibrium state, in this case simply unstretched, or

alternately consider an equivalent reference tether. Divide it

into infinitesimal 'elements', each described by its position 'x'



along the reference. We can now disturb the tether, and in the

ensuing motion each element will be displaced but still carry

with it the 'tag' x. We describe the motion of element 'x' at

time 't' by this displacement from equilibrium, u(x,t) =

(position at time t) - (reference position).

The equation describing the tether motion is derived by balancing

the acceleration of each tether element with the forces on that

element. The model assumed for the tether material determines

what these forces are. In general there will be three kinds of

force: elastic restoring force; dissipative forces due to energy

loss, such as friction; and external (body) forces such as

gravity gradient. More complex scenarios might involve changes

in tether properties due to, for instance, heating and cooling of

the tether. In our work here, we will use as simple a model of

tether properties as possible while retaining the features of

interest. The results will not be an exact and precise

prediction of expected tether response in a specific mission, but

are intended as an exemplar against which to compare actual

results (to see if any additional physics need be included to

" explain actual behavior), and as at least an approximate

description of reality which can give us information on the

relation between damping and pulse velocity, or total energy loss

vs. pulse width, etc.

Specifically, we consider two forces on each tether element: A

perfect, Hooke's law, elastic restoring force due to the

extension of the tether on either side. And an internal, viscous

damping force, proportional to the rate of stretch of the tether

on either side; this differs from the more commonly considered

viscous damping due to friction with a fixed external fluid,

which is proportional to the velocity, and something similar

might also be due to, say, friction between tether fibers. The

arguments of such a derivation are familiar from numerous physics

and structural engineering texts and will not be repeated here.

The end result is:

d

p'u := AE'u + AE''--'u

tt xx dt xx

where p is the mass per unit length of the tether, AE is the

tether axial stiffness (elasticity) and AE' is an equivalent

damping constant. To simplify the equations, scale the distance

variable by the speed of sound in the undamped tether, 'c', where



and the equation of motion becomes

I
u := 11 + b" "u

L dr!_ xx

t > O, 0 < X <

where b is a dimensionless damping parameter:

AE' "i_

b :-

AE

Here we very cavalierly ignore the details of the scaling and the

difference between the original variable x (in meters or

whatever) and the scaled x (in seconds). From now on, x refers

to the scaled variable. A value of x = 2, for instance,

corresponds to the distance traveled at velocity c in 2 seconds.

(We could scale both the space and time variables, and totally

eliminate parameters in the partial differential equation of

motion! However, this scaling does not have a simple

interpretation as the above does, and it is complicated enough

that it is difficult to see the effect of, say, very small

damping. This dimensionless problem might be useful for strictly

numerical work where only one problem need be solved by difficult

computation and stored, and all problems with arbitrary _, AE and

AE' are solved by scaling and lookup.)

To complete the mathematical statement of the problem, we need

initial and boundary conditions. For IC, we assume an initial

state of rest:

u(x,0) := 0

d

--'u(x,0) := 0

dt

0 < X <

For boundary conditions, the end at x = 0 is controlled; for our

case, we shall assume that the end is held fixed except for very

sharp impulse at time t = 0, idealized as a delta function. At

the x -> m 'end', a simple boundedness requirement appears to

suffice in the later analysis.

0a_ .

Q



u(0,t) := a(t)

u(x,t) remains bounded as x -->

TRANSFORMATION TO LAPLACE DOMAIN

The problem as defined above is a partial differential equation,

with both x and t derivatives. Such problems are seldom soluble

directly. One common way to simplify such a problem is to

perform a Laplace transformation in one of the independent

variables. The Laplace transform is an integral transform, one

of a family of generalized Fourier transforms, which carries one

from a domain in which problems are expressed in terms of a given

variable, say 't', to one in which the variable is typically

called 's' The Laplace transform of a function f(t) is called

F(s), and defined by

_ee --S't

F(s) := | e
J 0

•f(t) dt

The advantage of Laplace transformation for differential

equations is that it converts derivatives with respect to t into

simple multiplications by s. We shall not reproduce the details

of the transformation of our problem: they are found in numerous

applied mathematics books and are routine. We choose to

transform the variable t: u(x,t) --> U(x,s). The result is

2

s "U(x,s) := (1 + b's)'U

xx

0 < X <

U(O,s) := 1

U(x,s) bounded as x --> =

We have effectively decoupled the two independent variables. For

the purpose of solving the above, which is now an ordinary

differential equation, we can consider s to be a parameter of the

problem. When we have solved the problem for each s

independently, we will then have the complete function U(x,s).

For the moment ignoring the dependence on the p__reme-e, =_., simply

writing U(x), and denotiP, g derivatives by U'_x], et._.., we get a

linear boundary va:ue prcbem:

Ol_..dNAi. PAG'_ !_
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2

U''(x) - v "U(_) '= S

U(O) ": I

U(m) bounded

where

0

2 s

1 + b's

qot_ __t v is constant for the purposes of solving the ODE, and

that fcr real v > -I/b, the coefficient is negative. The

solution is then almost trivial, and again including the

dependence on s, we may write

or

-v'x

U(x,s) := e

i 1

U(x,s) := exp -x's'j iI , 1 + b's i
L J

This is the complete solution expressed in the Laplace domain.

Unfortunately it does us little direct good. Physical insight,

as well as application to simulation of specific missions,

requires again converting from the Laplace domain to %he time

domain, i.e. taking the inverse Laplace transform.

COMPUTING THE INVERSE LAPLACE TRANSFORM

Unfortunately, computing the inverse Laplace transform is not

usually as simple as the direct Laplace transform, except for
certain classes of functions. Additionally, the function whose

inverse transform is sought often exhibits complicated behavior,

as for our U(x,s). Indeed, it is likely that there often i8 no

closed form inverse for even seemingly simple problems.

Approximation techniques can be tricky since the inverse

transform is not well behaved.

A direct expression for the inverse transform does exist.

However, it requires extending the solution to the entire complex

domain. This is not too difficult with our present function,

although some care must be taken to stay on the correct branch of



the multiple valued square root function. Then we may write

u(x,t) :-
I rg+i.m s.t

2._.i J g - i "m e
• U(x,s) ds

Note that here we are integrating along a vertical line in the

complex plane. The constant g is any arbitrary number to the

right of all singularities of the function U(x,s).

A common way to approach computing this integral is to form a

Bromwich contour in the complex plane: consider a limited

segment of the vertical line along which the above integral is

taken, from g-JR to g+iR. Complete a contour by a large circle

about the origin intersecting the vertical line at those points

(other forms may be used). If there are any branch cuts, distort

the contour so as to enclose them with some tolerence e. By

Cauchy's integral formula the integral around the complete

contour may be expressed as a sum of the residues of U(s) at all

the poles within the contour. We let R --> m (and e --> O, if

applicable), and compute the contributions of the large, circqe
segment and of any contour segments along branch cuts and around

their termini, in the limit. Typically, the contribution of the

portion going to infinite radius vanishes. Then we may express

the solution as the sum of residues minus any branch cut

contributions. (This is all standard complex analysis, at least

in outline.)

Our example has no poles at all, but does have a branch cut along

the negative real axis (this is somewhat arbitrary) terminating

at -I/b. Some progress has been made, at considerable effort, in

demonstrating that the outer perimeter does indeed have zero

contribution and in evaluating the contribution along the branch

cut and around the branch cut point. This work is still

preliminary; it is not likely to result in a precise expression,

but may be able to provide physical insight (e.g., an

approximation for small damping) or convenient numerical methods.

As an interim expedient (partly done to check the derivation to

that point) we have decided to evaluate the integral expression

for u(x,t) directly. This evaluation is made relatively simple

using the MathCAD software package, a report writing and

numerical mathematics tool. The attached reports detail that

evaluation, but a brief introduction and some observations are

given here.

Three items are attached: First, a report showing how we

evaluate the integral expression; we indeed do see the expected

broadened pulse at the expected position. But there appears to



be some residual disturbance near the fixed tether end; a second

report shows that this is do to numerical problems evaluating the

integral at a distance from the actual pulse. Third, we include

a consistently displayed set of examples of pulse shapes for a

wide range of damping.

Essentially, MathCAD allows us to evaluate the integral

expression fairly directly. We simply parameterize a contour

segment as a function on a real interval, and integrate the

resulting complex function. We set a specific time t (we always

choose t = 1) and compute the pulse shape as a function of x.

For each x value (we typically take 40 to 50) a separate

numerical integral must be computed, which can take moderate to

substantial computation time. The real and imaginary components

of the solution u(x,1) are plotted; as expected, the real

component looks like a damped pulse, and the imaginary component

is very small, essentially roundoff.

The integral is performed along a finite segment from g - iR to g

+ iR. This leaves us two parameters g and R to choose. The

choice can strongly affect the efficiency, or even possibility,

of evaluating the integrals. We plot the integrand along the

line for a typical x value; MathCAD's interactive nature allows

us to this readily for a variety of parameters g and R, and a

variety of x, t and b, for evaluation on the computer screen. In

general, the integrand is much more tractable for values of x on

the pulse. Examples of tractable integrands are shown in the

first report and in the example pulse shape pages: the integrand

may oscillate mildly, or hardly at all, and has an envelope which

essentially vanishes within a few oscillations. R should be

chosen to encompass the region of non-negligible integrand, g

affects the integrand itself, and an improper choice can lead to

extremely large values or to envelopes which vanish slowly

forcing numerical integration over very many oscillations. For

points far from the region of the pulse on the x axis, it seems

impossible to find values of g leading to an easy integration.

Such intractable integrands are shown in the second attached

report which demonstrates the numerical problems near x = O.

Computing a pulse shape can take anywhere from a few minutes to

an hour or so, depending on the damping, the range of x over

which the pulse is to be computed, and the parameters g and R (on

an i386sx machine with coprocessor). Since MathCAD is highly

interactive, and since some time must be spent exploring for

appropriate g and R, these computations are expensive in person

time. There is little hope of automating the process within the

context of MathCAD, but it is likely that a more prescriptive and

less exploratory method may be found to choose g and R, and then

the pulse computation could be performed by a standard

integration routine in Fortran or C.



A set of pulse shapes is displayed at time t = I for values of

the dimensionless damping b = 0.001, 0.01, 0.1 and 0.5. The

lower left plot on each page is the significant one: the top

plots show typical integrands, and the lower right is the

vanishing imaginary component of the integral. It is saen that

even moderate b values significantly broaden the pulse. Rather

than slowing the transmission, damping speeds it on two counts.

To first order, the pulse peak travels at the speed of the

undamped pulse (indicated by the vertical line at x = I on each

plot); hence, half of the pulse precedes the peak. Second, for

larger damping values, it is seen that even the pulse peak

outspeeds the undamped pulse.
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VISCOELASTIC DAMPED TETHER

DIRECT INVERSE LAPLACE EVALUATION

The Laplace approach to solving the damped pulse problem leads to

an inverse Laplace transform, not readily expressed in elementary

functions. The inverse may be expressed as an integral along a

vertical line in the complex plane. This is typically evaluated

by completing the contour (Bromwich contour) and taking advantage

of any poles within, as well as branch cuts etc., but let us just

try to evaluate it directly for a sample damping and time, to

make sure we are on the right track. If we define

U(x,s) ": exp -;.:'s"
i

41 + b's

where b is a dlme_-.scn]ess damping parameter, x is position along
the tetk:er rsuitably scaled) and s is the Laplace domain

v._ _able. Then the profile at time t is

u(x,t) :=
I _g + i ""

!

2"T['i c g _ i "m

exp(s't)'U(x,s) ds []

where g is any value such that the cut is to the right of all

singularities.

in practice, although we can use complex numbers in the

integrand, we must parameterize the contour and then define the

contour integral as an integral over a real range (and of course

can't actually use an infinite range). E.g.,

s(r) "= g + i "r ==> ds = i.dr

u(x,t) -- F

2"R 'J-R

exp(s(r)'t).U(x,s(r)) dr

We are interested in some particular time and damping, say-

t e I b e .I (note global definitions)

and also a couple of parameters for the integration:



First let's look at the integrand:

jmax := 201 j := 0 ..jmax

2"R

dr :-

jmax

r := -R + j-dr

J

calculate a whole vector of functions for a typical x-

X "= 1

eU := (exp(s(r)'t)'U(x,s(r)))

ReFeu 7
L J]

/ \\

/
/

0.2

Zmieu ]L J

-1 -0.2

/
!

\ !

J
",j

\

-R r R -R r R

J J

Some lessons from experiment ng with the above:

-- The real part is symmetric, the imaginary part

anti-symmetric, and hence integrating to 0.

-- g=O seems like a good choice. For largish positive g, the

real part becomes oscillatory. For g approaching -I/b, it

becomes closely restricted near 0 but becomes very large

(e.g., 10..8).

-- As x goes away from x=1 (in the case t=1, where we expect a

pulse near if not at x=1) the integrand becomes

oscillatory, and the integral hence likely gets smaller.

Let's evaluate u(x,t) for a few sample values and then do a pulse

profile-

recall t : 1 b : 0.1 integration params R = 20 g = 0

uCl,t) = 1.247

u(2,t) = 0.031

U(.5,t) = 0.20!

u(.1,t) = -0.003



kmax := 100 k := 0 ..kmax xmax := 3 t xmax

dx :- xk

kmax k

:= k'dx

Uk -: (u(xk,t)) recall t = 1 b = 0.1 R = 20 g = 0

2

Re[Uk ,0

L.

-1

t

i

/

\/

0 xk 3

k

le-016

-le-016

r
h

0 xk 3

k

The little tweak near x:O appears to be a ubiquitous feature.

will look at it more closely in a separate file.

We

Note that the real part looks like a-pulse at the expected

position after one time unit, and the imaginary part is

essentially zero (very small roundoff errors keep it from being

precisely zero).



VISCOELASTIC DAMPED TETHER

DIRECT INVERSE LAPLACE EVALUATION

BEHAVIOR NEAR x = 0

In computing the pulse shape for sample times and damping, we

noted a typical behavior near x = 0 that is counter-intuitive:

the pulse profile dips below zero for x around 1/3 or so (the

major pulse peak is about x = 1, for t : 1) and then increases to

some fraction of the peak value as x --> O. Is this real, or an

artifact of our limited integration range and limits of Mathcad's

integration routine? Here we reproduce the analysis in the

previous paper in such a fashion that we can examine the region

near x = 0 in greater detail. We eliminate most of the

intervening prose and make the integration parameters R and 9

explicit function arguments (rather than global variables) so

that a series of plots for varying R and g can be presented.

b :=0.1 typical, fairly strong damping

F
f

U(x,s) "= expL-x's" 1 + b's]

s(r,g) := g + i -r ==> ds = i.dr

u(x,t,g,R) := exp(s(r,g)'t)'U(x,s(r,g)) dr

kmax := 30 xmax := 0.3

xmax

k := 0 .,kmax dx :-

kmax

xk

k

:= k'dx



t := I g "= 0 R := 20

°

Uk -= (u(xk,t,g,R))

t. := 1 g "= 0 R "= 30

0.3

Re[Uk],0
L k]

-0.1 '

0

\
\
\

\

'\

_I_ _ _'\ j

xk 0.3

k

Uk := (u(xk,t,g,R))

0.1

-0.4

/

/
/'

/
/

/

I

I

0 xk 0.3

k



t := I g "= -2 R := 30
-3

TOL = 1 10 (default TOL)

Uk := (u(xk,t,g,R))

0.03

Re FUk ],0
L kj

-0.05

/

j/
/

/
/

/

/
/

/

Y

0 xk 0.3

k

Clearly, from these three examples, the behavior of the profile

near x = 0 depends very much on the integration parameters

chosen. It is not clear from the above whether the Mathcad

integral routine breaks down, or if the inaccuracy is due to the

neglected part of the integrand (R determines what is neglected;

g alters the character of the integrand). We will try two

approaches. First, change the default integral convergence TOL.

Second, plot the integrand for small x and varying g to see what

is going on.

°

-4

t := 1 g := -2 R := 30 TOL := 1"10

Uk := (u(xk,t,g,R))

0.03

-0.05

I

i/"
r

/ I
/ I

/
//

/

/

b

0 xk

k

0.3



The result looks virtually unchanged. So it does not seem to be

numerical error. Now look at integrand.

t := I R := 30 g := 0 x := 0.05

jmax := 100 j := 0 ..jmax

R

dr -- r := j'dr

jmax j eU := (exp(s(r,g)'t)-U(x,s(r,g)))

I

Rereu1,0J]

-I

\

\
./ 'v /

0 r 30

J

t := I R := 30 g :=-2 x := 0.05

jmax := I00 j := 0 ..jmax

R

dr :- r -= j'dr

jmax j eU := (exp(s(r,g)'t)-U(x,s(r,g)))

I

0.2 L

Re[eUj ] ,0

-0.2

", ,, \ \, / / \

0 r 30

J

The above examples clearly illustrate that the integrand for

small x is highly oscillatory and decreases in amplitude only

slowly with increasing variable of integration r. Thus it would

require integrating over very many oscillations to approach a

correct answer. In contrast, the behavior of the integrand for

values of x nearer the pulse peak was seen to be much more

amenable to accurate integration. Note also that as g becomes

significantly smaller than 0 the integrand decreases

substantially.



VISCOELASTIC DAMPED TETHER

DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b E 0.001 TIME: t m 1

INTEGRATION PARAMETERS: g m 0 R _= 90

INTEGRAND FOR A TYPICAL VALUE OF X: x = 1.5

-1

-R r

J
INTEGRAL (PULSE SHAPE) on interval:

number of points:

xmin E 0.5

kmax _ 50

R

xmax m 1.5

2O

Re [Ukk] ,0

-I0

0 xk 2

k



VISCOELASTIC DAMPEDTETHER

DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b = 0.01 TIME: t = 1

INTEGRATION PARAMETERS" 9 _ 0 R_= 35

INTEGRAND FOR A TYPICAL VALUE OF X"

-I

x -= 1.5

-R r

J
INTEGRAL (PULSE SHAPE) on interval:

number of points:

xmin _ 0.5

kmax _ 50

R

xmax _ 1.5

4

-1 '

ReIOk1,0
L kj

/
,t f

0 xk

k

2



VISCOELASTIC DAMPEDTETHER

DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING:

INTEGRATION PARAMETERS:

b =- 0.1 TIME: t = 1

g = 0 R = 35

INTEGRAND FOR A TYPICAL VALUE OF X:

, q

-1

x =- 0.3

-R r

J
INTEGRAL (PULSE SHAPE) on interval:

number of points:

xmin = 0.3

kmax = 60

R

xmax _ 2.0

0

Y
.Y

/

J

\

xk

k

\

2



VISCOELASTIC DAMPED TETHER

DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b = 0.5 TIME: t -= 1

INTEGRATION PARAMETERS: g _ 0 R _ 100

INTEGRAND FOR A TYPICAL VALUE OF X: x -= 0.3

-1

-R r

J
INTEGRAL (PULSE SHAPE) on interval:

number of points:

xmin a 0.3

kmax a 60

R

xmax _ 2.0

0.6

Re [Ukk] ,0

0

Y
/

0 xk

k

2



VISCOELASTIC DAMPEDTETHER

DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b _ 0.5 TIME: t _ 1

INTEGRATION PARAMETERS: g _ 0

INTEGRAND FOR A TYPICAL VALUE OF X:

R- 90

x = 0.3

-1

-R r

J
INTEGRAL (PULSE SHAPE) on interval:

number of points:

xmln m 0.3

kmax _ 60

R

xmax - 2.0

0.6

Re [Ukkt ,O

0

0

i"

xk

k

2
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ANALYSIS OF SEDS-1 DYNAMICS FROM ON BOARD
INSTRUMENTATION

M. L Cosmo*, G.E. Gullahorn, E.C. Lorenzini **, M.Grassi ÷
Smithsonian Astrophysical Observatory

Cambridge, MA 02138

Abstract

The data of the instruments on
board the SEDS-1 end-mass can be

used to verify models of the
dynamic behavior of long space
borne tethers. The purpose of this
paper is to estimate the end mass
orientation and validate the

numerical codes. Our survey is
limited to the analysis of only the
accelerometer data. Preliminary
analysis of some results is
presented. A series of three tension

pulses generated as density
enhancements is the tether

deployed are also examined using
both satellite and deployer data.

1. Introduction

SEDS-1 successful flight has

provided the scientific community
with valuable data on the dynamic
behavior of long space borne
tethers. These data can validate
theoretical models and check their

applicability. Furthermore the
elastic properties of long tethers in

space can be assessed and compared
to the laboratory tests run on the

- Endmass Data: magnetic field,
accelerations and tether tension
vectors.

- Ground-based Dat_: radar and

optical observations of the
deployer, the end-mass and a radar
dipole located at the tether

midpoint.

The scope of this paper is the
study of the dynamics of space
borne tethers from the end mass

instrumentation data, namely:

1) Three-axis magnetometer to
measure the orientation of the end-

mass with respect to the
geomagnetic field

2) Three accelerometers to measure

non-gravitational accelerations

3) Three axis tensiometer to

measure the three components of

the tether tension and its torque.

The characteristics of the end-

mass instruments are listed in Table
1.

ground.
In the following, the

SEDS-1 data consists of three preliminary results of the analysis

main sets: of the end-mass instrumentation

data will be presented.
-DeDloyer Data: number of spool

turns, deployment rate and the Thus far the effort has been

deploying tension concentrated on:

1
"AIAA Member
**AIAA Senior Member

+AIAA Member. Visiting Scientist also PhD Candidate at University of Naples,
Italy.

-- "This paper is declared a work of the U.S. Government and is not subject to



- Estimation of end-massorientation

- Low-tension deployment

- Tether longitudinal dynamics

2; Estimation of End-mass orientation

In order to estimate the

orientation of a rigid body in space
two reference vectors are needed.

In our case only the magnetometer
was dedicated to such measurements

by using the geomagnetic field as
the reference. As second vector we
have used the "tether" vector.

Specifically, the direction of the
line connecting the end-mass to the
deployer has been compared to the
load cell unit vector.

to estimate the end-mass

orientation: QUEST (Q.uaternion
Estimation) and TRIAD (algebraic
method).

The quest algorithm 3 uses a set
of n observation at each time to

compute the attitude matrix A given
a quaternion q that minimizes in
the least square sense the so called
Wahba's cost function L(A):

N 2

£ I__w-A__vIL(A) = , _, , ,
1

where:

n = number of sets of unit
vector observations

ak = weights = 1/ok 2

For both sets of measurements

the end-mass orbital parameters are
needed in order to compute the
inertial components of the line
connecting the end mass and the
geomagnetic field. In our
preliminary analysis the results of

our computer program that SEDS-1
deployment have been compared to
the delta orbital track and tether

length and length rate from the

deployer data set. Table 2 shows the
orbital elements of the end mas at

the moment of the ejection. The
results of this fit are shown in

figures 1 where the time histories
of the end-mass magnetic flux,
height above the reference

ellipsoid, latitude and longitude are
shown, respectively. The agreement
with flight data is quite satisfactory.

It is also planned to compare these
data with the ground based data set
and those obtained from other

computer simulators and optimal
estimators 1,2.

The two sets of observations can

be combined to yield the attitude
matrix A and therefore the three

euler angles. We use two algorithms

ok = measurement standard
deviation

wk = k-th set of unit vector

observation in the body
reference frame

vk = k-th set of unit vector

representation with respect to
the reference frame

It can be shown that the solution

that minimizes L(A) is also the
maximum likelihood estimate of the

attitude for the particular choice of

weights 4,

The TRIAD algorithm 3, also

referred as the algebraic method 5,

uses only two reference unit
vectors to determine the three Euler

angles. Even though this is not an
optimal method it can be easily
implemented to check QUEST results.
It can be shown that when there

are only two measurements, as in
our case, QUEST and TRIAD are
equivalent.



2.1. Magnetometer Error Analysis

The magnetometer error

am ag is given by three main
contributions: measurement error

ameas, modeling error amod and

orbital error aorb.

The error budget of the

magnetometer measurement error
is as follows:

Linearity = +/- 0.5% FS = +/- 3

mGauss

Noise = +/- 1% FS = +/- 6 mGauss

Ripple Output = 10 mV rrns = 2.4

mGauss

Stability = +/- 1% FS = +/- 6

mGauss

The total error Omeas (rms) is
9.31 mGauss.

The strength and orientation of
the geomagnetic field is known
with high accuracy. In a case like
SEDS-1 the modeling problem plays
a minor role. Nevertheless an

estimate of its contribution can be
taken into account as a function of

the end-mass height5:

1.43x10 lz

a,_(mGauss)= (R+ h)3 -2.7

where h is the height above the
ellipsoid expressed in km and R is
the earth equatorial radius.

The knowledge of the end-mass

position plays an important role in
computing the reference field. An
error in estimating the end-mass
position results in an error in the

reference magnetic field that can
be expressed as:

O_orb ( °3B'_ 2 _ o3B 2 +

where B is the reference magnetic
field and r, O, q> are the end-mass
radius , colatitude and longitude,
respectively.

The magnetometer attitude error is

2 O.2measO_orb+ O'mod +

¢rmag = Be

where B2 is the modulus of the

magnetic field.

2.2. Load Cell Error Analysis

According to a NASA/LaRC

study 6 that takes into account

several sources of error, the
measurement error (RMS) of a load
cell is 7_tV. Since the full range
corresponds to 5000 l.tV we obtain
for each scale of the load cell:

glow =7 X 10-1/5000 = 1.4 X 10 -4 N

omed =7 X 1 /5000 = 1.4 X 10 "3 N

ahigh =7 X 10/5000 = 1.4 X 10 -2 N

No data on the instruments

biases is available yet, consequently
it is not taken into account.

For sake of brevity we do not

give here the expressions of the
error in measuring the "tether unit
vector" ameas and the error in

estimating the orientation of the
unit vector connecting the two end-

masses in the inertial frame aorb 7.

We can then write that the

tensiometer attitude error oT is:

o2T = a2meas + O2orb +a2mod

°

3



where amod, the modeling error,
takes into account that the line

connecting the two end platforms
does not coincide with the direction
measured by the tensiometer. In the

preliminary stage amod will be kept

constant and equal to 2.44 deg 8.

The accuracies in determining
the attitude from the tensiometer

and magnetometer data are shown
in figure 2 for SEDS-1 deployment.

At the moment of this writing no
data are available to give a
preliminary estimate of the end-
mass orientation.

3. Early Deployment Tether Dynamics

In order to validate our
theoretical models as well as

improve our understanding of

tether dynamics it is necessary to
go through the whole sets of data to
find correlations and be able to test

some hypotheses. Unfortunately
our survey will be limited to the

accelerometer data, being the only
validated set so far.

The accelerometer data provide
the basic information to analyze
SEDS- 1 dynamics. However,
additional information on the end-
mass orientation and rotation rates

are needed in order to provide the
complete model.

The comparison between the
moduli of the acceleration measured
on board the end-mass and the

acceleration computed by the
numerical simulation is shown in

figure 3. The flight acceleration has
been averaged over 60 seconds in
order to reduce the periodic
rotational terms.

The overall agreement is quite
evident even though the fit needs
further refinement. It is likely that

the assumed tension profile is a
principal source of disagreement.

Several interesting features
have been observed on small time

scales. Figures 4, for example, show
the three accelerations at 100

second after ejection.

The arc tangent of the y and x
component is plotted in figure S. We
can see that between 150 and 160

seconds the payload aligns itself
with the tether (X-Y plane) and
oscillates around that value with

amplitudes of about 30-40 deg.
Moreover the X-Y plane lies in the

orbital plane and the out-of-plane
component is mostly unaffected
oscillating around 0 with

amplitudes of about 0.002 m/s 2.
After 180 seconds it looks as the

payload is going through phases of
tether slackness, or at least very

low tension and consequent
bouncing. Similar alternating
periods of slack and taut behavior

were observed on TSS-19. This

behavior seems to suggest how the
tether was being deployed.

4. Tension Pul_

Embedded in the SEDS tether

were three linear lumps of flexible
metal 3 m long at 400 m intervals.
When the tether containing these
lumps deployed, the tension
increased due to the increased

tether density, giving a nominally
square wave tension pulse which
propagated into the tether. This

pulse was detected by both the load
cell and the accelerometers on the

satellite. As will be seen below, the
four relevant measurements (the z
acceleration does not show the

pulses, being closely orthogonal to
the tether direction, and the z

tension is not yet available) are
very nearly equivalent in form;
one example, the x acceleration, is

shown in Figure 6 for a period of
100 seconds containing all three

pulses. The pulses are clearly



distinct from the background
signal.

Visual inspection of Figure 6
seems to show some regularity in
the behavior following each pulse.
Figure 7 shows the three pulses
with both coordinates shifted so
that they appear stacked one on top
of the other. The structure is not so
apparent because of the expanded
time scale, but the similarities
remain: a sudden decline at about 6
seconds after the peak, lasting for 1
to 2 seconds,followed by a rise until
about 15 to 17 seconds after the
peak. Whether these regularities
are real or simply psychological
artifacts will need further analysis.

Figure 8 shows all four
measurements for each pulse, for
the four seconds surrounding the
peak. On this time scale the
individual samples (1/8 second) are
distinct. The four traces (the top
two are tension, the bottom two
accelerations) show closely similar
structure. Before the first pulse is
received at the satellite, note that
the two accelerations (and two
tensions) are very close, indicating
that the satellite is in the 45 degree
neutral hang angle. After, the
signals diverge, indicating a
departure from this attitude,
presumable due to the tension
pulse. Similar changes in attitude
occur across the other two pulses.
Since the four measurements are so
similar in character, we arbitrarily
choose one (the x acceleration) and
in Figure 9 superpose the three
pulses as in Figure 7, except with a
more detailed time scale.

To within the resolution of the
sampling, the appearance of the
pulses is quite similar: a fairly
sharp rise, no more than 3 samples
(3/8 s), a peak about 1 to 2 samples
wide (1/8 s), and a tail of
exponential appearance, with a
time constant of about 4 samples

(1/2 s). Before ascribing the
measured pulse shape to tether
material damping, we should
eliminate other possibilities. One
such is suggested by Gullahorn and
Hohlfeld 10, who show that even in
the absence of damping the finite
mass of the satellite will result in an
impulse response function (IRF)
with a sharp rise and exponential
tail. The decay constant is

x = M/)_c

where M is the satellite mass, c the

speed of sound in the tether and I_
the tether linear density. For
nominal SEDS values of M = 26 kg,

EA = 1.5 x 104 N, I.t = 3.3 x 10 -4 kg m -1,

we get x = 12 s. Clearly this effect
cannot contribute to the structure

seen in Figure 7.

Another possibility is that some
effect causes the pulse injected at
the deployer to be broadened
beyond the expected width: the

pulses in Figure 7 are 31.1 s apart,
corresponding to lump separation
of 400 m; so 3 m lumps should give a
pulse width of (3/400) 31.1 = 0.23 s.
There is a tension measurement at

the deployer, but the data is
averaged to give a sample rate of 1
s. However, two brief "snapshots"

were at a high sampling rate, 0.002
s; one snapshot covered the period
when a lump was being deployed,
corresponding to the first pulse.

The snapshot data has some very
short scale, large amplitude,
oscillation which makes direct

plots of little use (Figure 10a). If we

average over 25 samples, the pulse
is easily discerned at fairly high
resolution, and is seen to be close to

a square wave of width 0.2-0.3

(Figure 10b). Now if we average
over 62 samples, i.e. over 0.124 s,
this gives data at very nearly the
sample rate (0.125 s) of the satellite
data. These are both plotted in

Figure 11, and clearly some of the



apparent structure of the satellite
measurements could be due to the
sampling; but also clearly, the
slightly broadened rise time, and
the exponentially decaying tail, are
not in the input signal, no matter
how sampled. The most likely
explanation is that the pulse
structure is due to transmission
effects in the tether, either
nonlinear elasticity or damping.
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Table I. Fnd-mass Instrumentation

A¢celerometer
Low Scale

Medium Scale

High Scale

Tensiometer
Low Scale

Medium Scale

High Scale

Magnetometer

Range Resolution

±1 mg

±5 mg
+50 mg

±100 mN

:_1 N
+10N

±600mGams

8.3 gg

42. lag
0.42 mg

0.83 mN

8.3 mN
83 mN

4.7 mGams

Table 2. F_nd-mass Orbital Elements at eiection

Date
Time

Right Ascension (deg)
Inclination (deg}
Argument Perigee (deg)
Semimajor axis (Kin)
Eccentricity
Time since Perigee (sec)

Ejection velocity (m/sec)

March 30, 1993
4:12:00
27.26
33.97

182.64
6832.14
0.0401

2661.28

1.62
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11.0 DYNAMICS AND CONTROL OF SEDS-II

Figure Captions

Fig. 11.1 Deployment trajectories of the satellite with respect to the Delta second

stage at various stages during the convergence of the optimization

process for finding reference deployment profiles.

Figs. 11.2(a-c) Reference profiles: (a) length (m), rate (m/s), and brake (turn); (b) spool

turn (turn), spool rate (turn/s), and brake (turn); and (c) reference

simulation output for perfect reference conditions (i.e., no aerodynamic,

massless tether, no sling/scrub transition, no Delta drift): in-plane angle,

swing velocity, and tether tension.

Figs. 11.3(a-b) Deployment dynamics of SEDS-2 with an "additive" (see text) feed-

forward/feedback control law for: (a) reference minimum tension TO = 30

mN; (b) To = 10 raN; and (c) To = 40 mN.

Fig. 11.4 Block diagram of SEDS-2 control law.

Fig. 11.5 Response of low-pass filter for a -- 1, different values of c and sampling

time T = 1 s.

Fig. 11.6 The filter of SEDS-2 is tested on the flight data of SEDS-1 to smooth out

the velocity. The filter parameter are: a =1, c - 0.125, and T = 1 s.

Figs. 11.7(a-b) Dynamic response for reference case with "proportional" (see text)

control law: TO - 30 mN along the whole tether; annulus solidity - 0.96;

area exponent = -0.8; and inertia multiplier = 3. Tether is massive, Delta

drifts 2000 s after end-mass ejection, aerodynamic drag is present,

sling/scrub transition occurs at about L _> 18.8 km.

Figs. 11.8(a-e) Sensitivity of system response to uncertainties affecting the tension

model. Deployment dynamics for values of the minimum tension

ranging from 10 m N to 60 mN.

Fig. 11.9 Maximum libration amplitude at end of deployment for: (1) an ejection

velocity -- 1.64 m/s (SEDS-2 springs); (2) an hypothetical ejection

velocity -- 2.4 m/s (PMG springs); and (3) SEDS-1.
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Figs. 11.10(a-b)

Figs. 11.11 (a-b)

Figs. 11.12(a-b)

Fig. 11.13

Figs. 11.14(a-e)

Figs. 11.15

Figs. 11.16

Figs. 11.17

Figs. 11.18(a-b)

Sensitivity to uncertainties affecting the brake response as follows: (b)

the friction coefficient is 0.1, i.e. 50% lower than the reference value of

0.18; and (b) the friction coefficient is 0.26, i.e. 50% higher than the

reference value.

Sensitivity to tension random fluctuations as follows: (1) an additive

component that fluctuates +2 mN with respect to the baseline value; and

(2) a multiplicative component that fluctuates +50% of the baseline value.

Sensitivity to saw-tooth noise affecting the tension. Saw-tooth noise for

L > 17 km, with a fluctuation of_+0.5 N and a period of 30 s.

Maximum libration amplitude at end of deployment for: (1) V0 = 1.64

m/s, 00 = -4.7 ° (nominal conditions); (2) V0 = 1.56 m/s, 00 = -6.7°,f=

0.1, and Hapo- Hper = 50 km (conditions of maximum dispersion); and

(3) SEDS- 1.

Comparison simulation between the SAO and NASA/MSFC computer

codes for the reference case (To = 30 mN).

New (January 1994) baseline case with temperature x = 13 °C and the

following model parameters: TO = 12.5 mN for 19.7-km new and

cleaned tether and TO = 70 mN for 300-m old tether at the end; annulus

solidity = 0.9424; area exponent = -0.6; inertia multiplier = 4.1.

Same parameters as above except for TO = 15 mN for the new tether

(cold case with "c= 2 °C).

Same parameters as above except for TO = 8 mN for the new tether (hot

case with x = 35 °C).

Effect of heavy tensional noise on the dynamics according to the new

(nominal) baseline. The noise structure is as follows: an additive

component of +10 mN; a multiplicative component of +50%; and a saw-

tooth noise of_+0.5 N with a period of 30 s active for L > 17 km.

1_
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Figs. 11.19(a-b)

Figs. 11.20(a-b)

Figs. 11.21(a-b)

Figs. 11.22(a-b)

Fig. 11.23

Flight dataof SEDS-2:(a) raw tensionfrom thedeployer'stensiometer;

and(b) filteredtensionaftertheendof deployment.Fromtheanalysisof

the filtered tension,the maximum libration amplitude at the end of

deploymentis 3.2deg.

Flightdataof SEDS-2:(a) raw tetherexit velocity from theturncounter
(oneturn counterwasdeclaredfailed at t = 2200s); and(b) raw tether

length.

(a) 10-saverageof tethervelocity after havingeliminatedthe spurious

velocity values> 10m/s due to the turn counter'sfailure; and (b) in-

planeangleestimatedby feedingthe10-saverageof tethervelocityto the

SEDS-2 deployment simulator. According to this estimate, the

maximumlibrationamplitudeattheendof deploymentis4 deg.

(a) 100-saverageof tethervelocity afterhavingeliminatedthespurious

velocity values> 10m/s dueto the turn counter'sfailure; and (b) in-

planeangleestimatedby feedingthe 100-saverageof tethervelocity to

the SEDS-2deploymentsimulator. According to this estimate, the

maximumlibrationamplitudeattheendof deploymentis2 deg.

The actual brake turns from the SEDS-2 flight are comparedto the

refrencebrakeprofile.

96



11.1 SEDS-2 Closed-loop Control

11.1.1 Control Scheme

Law

Difficulties in devising a control law which provides small librations at the end of

deployment stem from the stringent hardware limitations of the SEDS system. Namely: a

brake with highly non-linear characteristics (i.e., exponential response); a deployer which

can not reverse the deployment velocity; a Z-80-based computer with limited computational

speed and 28 Kbytes of memory available for the control software; only one sensor with a

repeatability adequate for a feedback control loop, i.e. a turn counter which measures the

number of tether turns deployed from the spool with an accuracy of one turn.

The goal of the control law is to control a non-linear plant both in terms of dynamics

and actuator response in the presence of uncertainties affecting the actuator and the plant.

The performance goal is a libration of less than 10 deg at the end of deployment for large

(and unpredictable) variations of the tension values. One additional requirement calls for

the activation of the brake only after the first kilometer of tether has been deployed

because, since the tether tension is too low at short tether lengths, an over braking could

stop the deployment at short range.

The strategy followed to derive the control law splits the control problem into two

parts: (1) finding the solution of a two point boundary value problem; and (2) developing a

local linear feedback controller.

The solution of the boundary value problem, by means of a parametric optimization,

provides the reference length Lre f and velocity l_,ref profiles and an associated reference

brake profile Brc f (reference control input) [1,2]. The reference brake profile is the non-

linear part of the control law which is fed forward to the actuator. This non linear part

enables a linearization of the perturbed response of the system around the non-linear

solution. For this reason, this technique of splitting the control law into a feed-forward

non-linear component and a linear feedback is sometime called feedback linearization.

The linear feedback control, which is the subject of this report, is a PD controller

which forces the system to follow the reference length and velocity profiles by canceling

the length and velocity errors with respect to the reference.
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11.1.2 Implementation of Control Law

Tension Model

The tension model for the SEDS deployer was derived empirically from the analysis of

deployment tests on the ground, supported by physical considerations. In summary the

tension model consists of a static component TO (the minimum tension) and a dynamic

component, proportional to the square of the deployment velocity. The actuator (brake) is

modeled as an exponential function e B that multiplies the input tension. A second

exponential function models the friction between the tether and the exit guide. See eqn.

(9.1) in Section 9.2 for the mathematical expression of the tension model.

Reference Profiles

The feed-forward part of the control law is the reference brake profile which enables

the system to follow the desired length Lrc f and speed l_ref profiles under reference

conditions and a reference tension model.

The reference profiles are computed with an iterative process aimed at minimizing the

value of a cost function at the end of a deployment of desired duration. The optimization

process is briefly outlined in the following. The brake profile is expressed in terms of a

finite (and small) numbers of parameters, for example by means of a cubic spline with a

few fixed points. A cost function is constructed in such a way that its value approaches

zero for the desired values of the state vectors at the end of deployment. An optimization

routine, suitable for minimizing generic (non-smooth) functions, is adopted to search for

the optimal set of parameters of the brake profile. For each trial of brake parameters, the

numerical integration of the deployment trajectory enables the computation of the cost

function at the end of deployment. The optimization routine selects different sets of brake

parameters based on the trend of the cost function from iteration to iteration. Figure 11.1

shows the convergence of the optimization routine by depicting selected deployment

trajectories during the iteration process. The minimum tension and the target state vector

for this particular optimization run were as follows: TO = 20 raN, Xgoa I = 0 m, Zgoa I 20 =

km, X = 0 m/s, Z = 0.8 m/s where X, Z and X, Z are the components of the satellite

displacement and satellite velocity with respect to an local horizontal-local vertical (LH-LV)

reference frame centered at the Delta second stage. For a more detailed description of the

optimization process see Ref. [1] and Ref. [2].
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ThereferenceprofilesLref, l'.ref, and Bre f are memorized in the on-board computer in a

3x900 array of data (reference table) in fixed point format with a three digit accuracy. The

reference table for the flight software of SEDS-II was derived for the numerical values of

the system parameters shown here below. These values were based on the flight data of

SEDS-I.

Tension model and system parameters

TO = Minimum tension = 30 mN

A = Tether annulus solidity = 0.96

E = Area exponent = -0.8

I = Inertia multiplier = 3

m = Satellite mass = 25.9 kg

tD = Deployment duration = 6,500 s

Orbital parameters" and initial conditions

H = Orbital altitude = 350 km

00 = Ejection angle = -4.7 deg (backward wrt LV)

V0 = Ejection velocity = 1.64 rn/s

The Lref, Lref, and Bref profiles are shown in Figs. l l.2(a). The flight software

reference profiles, which are expressed in terms of spool turns and turn rates, are shown in

Fig. 11.2(b). The simulation output, i.e. in-plane libration angle 0, swing rate _) and tether

tension, for perfect reference conditions (i.e., no aerodynamic drag, massless tether, no

sling/scrub transition, no Delta drift) are shown in Fig 11.2(c). For a tabulation of SEDS-

II flight reference table, called Refl_14June93, see Ref. [3].
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The following numerical values have been adopted for nominal orbital and system

parameters of the SEDS-2 flight: circular orbit at an altitude of 350 km (orbital rate f_ =

1.144x10 -3 rad/s); orbital inclination = 30 deg; end-mass m = 25.9 kg; tether linear

density p = 0.33 kg/km; tether diameter = 0.75 mm; tether stiffness EA = 15,000 N; tether

axial viscosity E'A = 1,000 N-s; and tether final length Lend = 20 km. The end-mass is

ejected with a speed V0 = 1.64 m/s at an angle 00 = -4.7 deg (backward of the downward

local vertical).

Feedback

By following the reference Bref profile, an ideal system without any errors or

disturbances and under reference initial and orbital conditions will follow the reference

length and length rate profiles and hence reach the end of deployment with a zero libration

amplitude in a given time. However, while the ejection conditions are known within a

+5% error, much larger uncertainties affect the tension model and the brake response. A

feedback is needed in the control law to make it more robust by correcting for the effects of

the uncertainties in the tension model and actuator response.

The feed-forward part of the control law (without feedback) has the form B = Bref

where Bref is the reference brake profile. If uncertainties and/or errors are present, the

system will not follow the length and length-rate profiles and consequently the libration

response will be different from the desired response. One way to compensate for the

effects of errors and uncertainties is to implement a feedback controller that forces the

system to follow the reference length and length-rate profiles under off-reference

conditions.

The classic approach, encountered in the literature [4], for implementing the feedback

control law is to add the feedback controller to the non-linear component (i.e., to the feed-

forward component) of the control law. Consequently, the formulation of the control law

would be:

B = Bref+ F (11.1.1)

F = k18L + k28L (11.1.2)

8L = L - Lref (11.1.3)

8I_= L- Lref (11.1.4)
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whereF is thefeedbackand8L and8L arethelengthandlength-rateerrorswith respectto

thereferencerespectively.Becauseof its mathematicalformulationwecall thiscontrollaw
"additive". Resultsfrom simulationscarriedoutwith theadditivecontrollaw areshownin

Figs. 11.3(a-b)for off-referencetensionvaluesof 10mN and40mN. Whencomparedto

the analogouscurves shown in Figs. 11.8 relevant to the control law formulation

(explained later on) adoptedfor SEDS-2,the simulation resultsclearly show that the

additivecontrol law is unableto provideasystemresponserobustenoughwith respectto

variationsof thetensionmodelparameters.

Anotherformulationof thecontrol law wasattemptedwherebythefeedbackcorrects

the referencebrake profile proportionally to the instantaneousvalueof that profile as
follows:

B = Bref(1+ F) (11.2)

We call this control law "proportional"becausethe feedbackis proportionalto the

referencebrakeprofile.

Control Gains

The equations of motion for a dumbbell system with a massless and straight tether are

as follows

iJ + 2_-( 0 - f_)+ 3 f22 sin(20)=0 (11.3.1)

- L ( t_ - _)2 _ L _2 (3cos2(0) _ 1) = - Tre___gf
m (11.3.2)

where the tension Tref is given by eqn (9.1) of Section 9.2. Eqns (11.3) can be

linearized around the solution provided by the reference profiles to yield:

• .

_0 + 2 _ff 50 + 3 _2 cos(20ref) 50 - _2 eff ( 0ref- _) _iL + _Lref ( 0ref - _'_) _L = 0

(11.4.1)
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_[, + 2 aI_re____f5L - [()2re f - 20ref _ + 3_ 2 cos2(0ref)] _;L
m

+ 6Lref _2 cos(0ref) sin(0ref) 80 - 2Lref (0ref- _) 80 = - 8B + _f) (11.4.2)

where ST0 represent the departure of the minimum tension from its reference value and a =

Ip (1 - A L/Lend) E. In deriving eqns (11.4), the dependence of the tension model of eqn.

(9.1) on the variables 0 and L was neglected by replacing the relevant terms with their

average values. Moreover, since 5B << 1,

eB = e(Bref + 5B) = eBref (1 + _B)

For the additive feedback of eqn. (11.1.1 ),

8B = F (11.5.1

and for the proportional feedback of eqn. (3),

_SB = Bref F (11.5.2)

After defining _, = L/Lref and 1:= 5T0/Tref, eqn. (11.5.2) can be expressed in a non-

dimensional form as follows:

_)_ +dl _, + d2 8)_ + d3 50 + d4 80 1 Tref
- m Lref (SB + 5x) (11.6)

where dl -- 2 l_ref Ip (1 - A L/Lend) E
Lref m

d2 = 20ref f_ - 3_ 2 cos2(0ref) - t)2ref ( 11.7)

d3 = 6_ 2 cos(0ref) sin(0ref)

d4 = 2(_ - ()ref)

After numerical evaluation and considering that _50 = _80, the last two terms on the

left hand side of eqn. (11.6) can be neglected with respect to the other terms for the

expected ranges of the variables in question. For the reference tension model 5'_ = 0, and

106



after neglectingthe terms mentionedaboveandsubstitutingeqn. (11.5.2),eqn. (11.6)

yields

/ BrefTref)( 18_,+ dl+ m Lref t(2 8_,+ d2 +BrefTrefm Lref 1(1 _,=0 (11.8)

In first approximation, this equation can be used to compute the non-dimensional

control gains _1 = Lrefkl and _2 = Lrefk2 disregarding, for the time being, eqn. (11.4.1).

Since eqn. (11.8) has variable coefficients, it must be analyzed at frozen times during

deployment in order to estimate the dynamic response analytically.

The mid-deployment time of SEDS-2 is t = 3250 s. At this time, the values of the

parameters in the equation are as follows:

dl = 8x10 -8

d2 = 4x10 -6

Bref Tref 4x 10 -6
m Ere f -

(11.9)

At frozen time, eqn. (11.8) is a canonical second-order equation. Consequently, the

rotational frequency, damping ratio, and time constant are respectively

1 Tref )1/2f.O = d2 + m Ere---_ l'cl

1 Tref
(11.10)

A time constant T = 100 s and a damping ratio _ = 0.7 were selected for the control

system, leading to _1 = 12.76 and K2 = 2500 or equivalently k I = 2x10 -3 N/m and k2 = 0.4

N/ms d .

Extensive simulation runs have indeed verified the validity of the value selected for kl

while the value of k2 has been reduced to 0.2 N/ms-1 in order to make the control system

less susceptible to the abrupt tension variations at the end of deployment caused by the

mechanization of the deployer (i.e. two-way transitions between sling and scrub modes for

107



low deployment velocity and small diameter of the spool). In summary, the values adopted

for the control gains of SEDS-2 are

kl = 2x 10 -3 N/m (position gain) ( 11.11.1 )

k2 = 0.2 N/ms -1 (velocity gain) (11.1 1.2)

Block Diagram

The flight control software is based on an outer loop sampled at every 8 seconds and

an inner loop sampled at every 1 second. The output of the turn counter (see Fig. 11.4),

sampled at every second, is filtered (see next subchapter) and the turn count rate is

computed by taking the numerical derivative of the filtered turn counts over 8-s intervals.

This process provides a smooth turn count rate despite the high noise level of the turn count

signal. At every 8-s, the smoothed turn count and turn rates are compared to the reference

turn count and rate for computing the correction (feedback) to apply to the reference brake

Bref profile in order to track the reference length and rate profiles.

It is important to stress that the control software is based on number of turn counts and

turn count rate as opposed to length and length rate. Because of the spool geometry, the

two set of variables are linked by quadratic relationships as follows:

L = al Tc 2 + a2 Tc + a3 (11.12.1)

I_= 2 a l Tc + a2 (11.12.2)

where Tc is the number of turn counts. Consequently, the derivatives of eqn. (11.1.2)

with respect to 5L and 5I_ yield the relationships between the L-based control gains and the

turn-based control gains as follows:

K1 = kl (a2 + 2 al Tc) (11.13.3)

K2 = k2 (a2 + 2 al Tc) (11.13.2)

where KI and K2 are the turn-based control gains which appear in the turn-based

corrective term (feedback)

F = ATc + AJ'c ( 1 1.14)

where ATc = K! 5Tc and AT c = K2 _5"i'c.
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Once the individual components of the feedback AT c and A'Fc are computed, they are

checked for saturations and thresholds according to the following logic (similar expressions

hold for ATc):

if: abs (STc) < 5Tire

then: ATc = 0

elseif: abs (STc) > 5Tsat

then: ATc= KI (STsat- 8Ttre) sign (STc)

else: ATe = K I (abs (STc) - 5Ttre) sign (STc)

where 5Tsar and 8Ttre are the saturation and threshold values respectively.

Once the correction tem_ (eqn. 11.14) is computed, it is also checked for saturations:

if: F < - 1 then F -- - 1

if: F > Fsat then F = Fsat

where Fsat (i.e., the upper bound of the feedback) limits the control authority. For SEDS-

2, Fsat was equal to unity.

Finally, the brake command is computed according to

B = Bref (1 +F) (11.15)

The number of allowable brake turns B is also limited as follows:

if: B > Bmax then B = Bmax

where for SEDS-2, Bmax is equal 6.

Filtering

Deploying from a passive spool with a tether rubbing on various metal surfaces is

dominated by the stick-slip mechanism as it is easily inferred from the data of the SEDS-1

flight. This mechanism gives rise to an output signal from the turn counter with a high
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noise level. Effective filtering is, therefore,important in order to eliminate the high

frequencycomponentsfrom theturn counteroutput signalandconsequentlycomputea
noise-freeturnrateby meansof numericalderivation.

The filter adoptedin this control schemeis a recursivefilter with the following
formulationI5l:

y(i+l) =a y(i) + c lu(i+l)- a y(i)l (11.16)

where u(i) is the measured value at the i-th step, y(i) is the filtered variable at the same

step, a determines the type of filtering and c the cut-off frequency. In particular, for a =

-1, the filter in eqn. (11.16) is a high-pass filter and fora = 1, (which is the value we will

adopt from now on) it is a low-pass filter.

The amplitude of the filtered variable is given by

M = c [a 2 (c - 1) 2 + 2a (c - 1) cos(03T) + 11-1/2 (11.17)

where T is the sampling frequency of the measured variable.

Figure 11.5 depicts the attenuation provided by the filter for T = 1 s, a = 1 (low-pass),

and different values of the parameter c. Specifically, for c = 0.1, the cut-off frequency

(defined as the frequency at -3 dB) is about 0.02 Hz. A cut-off frequency of 0.02 Hz is

adequate for SEDS-2 since, from experinaental data, the lowest-frequency noise component

is at about 0.033 Hz.

Moreover, the performance of the filter and the velocity computation routine (by

numerical derivation) was tested on the deployment data of SEDS-1. In Figure 11.6, the

deployment velocity, obtained through filtering of the turn count data, is compared to the

unfiltered velocity. The filter parameters are those adopted for SEDS-2 as follows: a = 1, c

= 0.125, T= 1 s.
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11.1.3 Robustness of Control Law

Reference Case

The simulation runs have been carried out with the DUMBBELL computer code which

has the following characteristics: in-plane dynamics, generic orbit, point end-masses,

aerodynamic drag, spherical gravity model, straight and visco-elastic tether.

The dynamics for the reference case is shown in Figs. 11.7(a-b). In the reference

case, the minimum tension is equal to 30 mN and it is assumed constant along the entire

tether length. The following values were adopted for the other parameters of the reference

tension model: annulus solidity = 0.96, inertia multiplier = 3, and area exponent = -0.8 [6].

The reference case does not have perfect reference conditions as opposed to what was

assumed for the simplified model for the derivation of the reference profiles. The reference

case adopts more realistic reference conditions: the tether is massive, the Delta second stage

drifts from its flight attitude 2000 s after the end-mass ejection, the aerodynamic drag is

present, the sling/scrub transition occurs for a tether turn rate < 13 turn/s at about L = 18.8

km and t > 5,700 s.

The tension model is one of the main source of errors because it is affected by large

uncertainties due to the unpredictability of frictional forces in the deployer. Specifically,

values of the minimum tension can range, most likely, between 10 mN and 40 mN while

the friction coefficientfcan exhibits variation of +_50% with respect to the most likely vale

of 0.18. Since the friction coefficient appears in the argument of an exponential function

(i.e. the brake multiplier eB), it has a dramatic effect on the tension. For the average

number of brake turns of 3, a +50% change of the friction coefficient corresponds to a

+500% variation of the tension. For the maximum number of brake turns of 6, a +50%

change of the friction coefficient corresponds to a +3000% variation of the tension.

For the reason above, it is important to demonstrate the robustness of the control law

with regards to large uncertainties in the tension model and the actuator response.
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Sensitivity to Uncertainties in the Tension Model

In this subsection we investigate the sensitivity of the SEDS-2 control law to

departures of the tether tension from the baseline model.

• Specifically, for the values of deployment velocity of SEDS-2 (< 6 m/s), the dominant

contribution in the tension model is from the static tension TO. Figures 11.8(a-e) show the

dynamic responses during deployment for static tensions ranging from 10 mN to 60 mN

(excluding the reference tension of 30 mN shown in Figs. 11.7). In Figure 11.9, the

maximum libration amplitudes of SEDS- 1 and SEDS-2 at the end of deployment are shown

vs the static tension TO. The control law of SEDS-2 provides a maximum libration

amplitude that ranges between 2 deg and 10 deg for I0 mN < TO < 45 mN. The

deployment would stop at short range (< 1 km) without resuming for a static tension > 65

mN.

The drop-off of the control law performance for static tension > 45 mN is due to lack

of initial momentum (i.e., a low ejection velocity) rather than lack of robustness of the

control law. The brake can only slow down the deployment velocity and the gravity

gradient is not able to speed it up for high values of the static tension if the initial

momentum is insufficient. Consequently, if the ejection velocity is small and the static

tension is high the brake can only command the brake not to intervene. The robustness of

the control law to variation of the static tension is clearly demonstrated by the curve in Fig.

11.9 relevant to an ejection velocity of 2.4 m/s (PMG-type of ejection mechanism). In this

case the drop-off in the performance of the control law is for TO > 60 mN while the

deployment would stop at short range for TO > 95 mN.
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Sensitivity to Uncertainties in the Actuator Response

The response of the brake is also highly uncertain as pointed out before. A change in

the brake effectiveness is best modeled as a variation of the friction coefficient. Figures

11.10(a-b) show the dynamic response during deployment for values of the friction

coefficient ranging from 0.1 to 0.26. The baseline value of the friction coefficient is 0.18.

Independent experimental measurements of the friction coefficient of Spectra-I000 on

Aluminum were carried out at the "Staatl Materialpr_famt f'tir Textilstoffe" in Reutlingen,

Germany in June 1993. The tests were directed by Dieter Sabath of the Technical

University of Munich. The tether was a sample of the flight tether (the new tether before

cleaning) and the rubbing material was the actual brake post of the SEDS deployer. The

tests were done at two different temperatures x of the tether while the brake post was at the

room temperature of 23 °C. Measured values of the friction coefficientfwere as follows:f

= 0.15 for x = 0 °C and f= 0.16 for 't = 15.5 °C. A detailed report on the friction tests is in

Appendix B of Ref. [3].

The conclusions from the sensitivity to uncertainties affecting the brake response is

that variations as high as +50% with respect to the baseline value of 0.18 for the friction

coefficient still lead to a maximum libration anaplitude _<10 deg at the end of deployment.

Sensitivity to Random Noise

In order to test the effect of broad-band random noise upon the control law, noise is

superimposed on the tether tension. Specifically, the structure of the tension affected by

noise is as follows:

TN =ST+Na+T(I +Nm) (11.18)

where T is the noise-free tether tension, Na and Nm are broad-band random noise

components, and ST is a saw-tooth, low-frequency noise component. Na and Nm are

generated by zero-bias white noise routines which have been filtered (with a high-pass

filter) to eliminate the noise components with a frequency < 0.35 Hz. If this frequency is

interpreted as the number of turns per second inside the deployer, 0.35 turn/s corresponds

to a tether exit speed of roughly 0.15 m/s which is rarely encountered.

This strategy of filtering the white-band noise was adopted in order not to introduce

unrealistic low-frequency noise components. The noise component with the lowest

frequency is represented by the function ST which models the fluctuations, observed
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during the SEDS-2 deployment tests on the ground and also in the SEDS-1 flight data,

produced by the parallel winding of the tether on the spool. For SEDS-2, parallel winding

starts at a tether length of about 17 km and the period of the associated noise component is

about 30 s.

A tension fluctuation (as modeled in eqn. 11.18) produces a speed and hence a turn

count fluctuation. The tension is, therefore, the most effective way of introducing noise

into the system dynamics.

As mentioned before, the tether tension is assumed to be affected by an additive and a

multiplicative noise component. Specifically, the additive noise component is important in

the early phase of deployment when the tension is low. This component represents the

effect of the stick-slip which dominates the low tension deployment up to a tether length of

about 2 km. The multiplicative term represents the increase of tension fluctuations

proportionally to the instantaneous value of the tension at later stages of deployment.

In the case shown in Fig. 11.11 (a-b), the additive noise component is +2 mN and the

multiplicative component fluctuates +50% with respect to the baseline value. Unbiased

noise components were adopted because the effects of biases in the tension model are better

represented by a variation of the minimum tension and variation in the brake effectiveness

are better represented by variations in the friction coefficient (see relevant subsections of

this report). In general, relatively high levels of random noise do not affect appreciably the

system performance during deployment.

When the tether winding on the spool switches from universal (criss-cross type) to

parallel, the tension fluctuations are dominated by a low frequency noise best described by

a saw-tooth function. From deployment tests on the ground of SEDS-2, the amplitude of

the tension fluctuation is conservatively less than _+0.5 N with a period of roughly 30 s.

The parallel winding starts at a tether length of about 17 km.
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The effectof the saw-tooth-shapednoisewassimulatedseparatelyfrom the random

noisesand the results are shown in Figures l l.12(a-b). Since tension fluctuations

influencethetetherspeed,theresponseto tensionfluctuationsis atestof theeffectiveness

of the filter in the control loop. In this particular control system which lacks a
speedometer,the performance of the filter is especially important because, since the speed

is computed from numerical derivation of the turn count, it is very sensitive to noise that

affects the turn count. The most damaging noise components are the low-frequency

components such as the saw-tooth noise.

The plots show that the recursive filter is very effective in abating the low-frequency

noise and the filtered turn rate exhibits a smooth behavior. In conclusion, the deployment

response is not significantly affected by this low-frequency noise component.
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Combined Effect of Noise and Errors

Besides the uncertainties affecting the minimum tension and the brake response

(modeled as a variation of the friction coefficient), the ejection velocity and direction also

affect the final libration amplitude. The reference profiles are in fact derived for the

nominal set of values for the initial conditions and any deviations from those values imply a

non-null final libration. An orbital ellipticity also forces a non-null libration amplitude

because the eccentricity pumps the libration through variations of the in-plane gravity

gradient torque at the orbital frequency. Moderate value of eccentricities, however, have a

weak effect on the libration. All these contributions to a non-null final librations are

combined in the most destructive way to produce the dispersion plot shown in Figure

11.13 where the final libration amplitude is shown vs the minimum tension for two cases

as follows: (1) nominal conditions V0 = 1.64 m/s, 00 = -4.7°,f = 0.18,350x350 km orbit;

and (2) off-nominal conditions V0 = 1.56 m/s (5% less than nominal); 00 = -6.7 ° (-2 ° with

respect to nominal),f = 0.1 (50% less than nominal), and an altitude difference between

apogee and perigee of 50 kin. The boundary values adopted for the dispersion of orbital
/

and other parameters are representative of the system expected performance.

The plot in Fig. 11.13 clearly shows that the worst possible combination of

uncertainties and errors can degrade the control law performance by increasing the final

libration amplitude by as much as 5 ° over the expected span of minimum tension values

(i.e., 10 mN< TO < 45 raN). However, the worst possible combination of uncertainties is

unlikely to occur.

11.1.4 Validation of SEDS-2 Control Law

A validation of the simulated performance of SEDS-2 control law was carried out by

means of test-case simulations run in parallel at SAO and NASA/MSFC [71. Since the

computer codes at SAO and NASA/MSFC are completely independent, this comparison

provides a comprehensive test of the control law and the simulation software. In

particular, the specific code used to develop the SEDS-2 control law at SAO assumes the

tether to be straight while the NASA/MSFC computer code models the bowing of the

tether. A successful validation, therefore, acquires the additional meaning that the bowing

of the tether and the additional vibrational modes have a negligible effect on the

performance of the control law. Another, less important, difference between the two codes
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involves the gravity model: the SAO code used for SEDS-2 has a spherical gravity model

while the NASA/MSFC code has a J0 + J2 gravity model. This difference accounts for the

small discrepancies in the plot of the tether libration angle.

The simulation results for the most important variables from the two computer codes

areshown in Figures l l.14(a-e). This simulations adopt the reference values of the

parameters as indicated in Section 11.1.2.

The results from the SAO simulators were also compared to the results obtained by

Logicon Control Dynamics which are reported in Ref. [8]. In this case, the comparison

was qualitative because it was based on the analysis of plots, rather than files, relative to

same simulation cases. Unlike the comparison with the NASA/MSFC code, the

comparison covered not only the reference case but also the low-static-tension and the high-

static-tension cases. The agreement between the results is impressive with maximum

differences between the libration angles from the two codes of less than 1 deg.

11.1.5 Simulation of latest baseline deployments

The latest configuration of the flight tether consists of 19.7 km of the new (cleaned)

tether and 300-m of the old (SEDS- 1 type) tether spliced to the new tether at the deployer

end. From the deployment tests conducted on the ground and analyzed by NASA/MSFC,

the most likely values of the static tension for the new (cleaned) tether are as follows: TO =

10-15 mN for a temperature of 13 °C (55 °F, nominal case); TO = 10-15 mN for a

temperature of 2 °C (36 °F, cold case); and TO = 8-10 mN for a temperature of 35 °C (95

°F, hot case). The old tether, instead, exhibits a rather high and uncertain static tension,

estimated, at the time of this writing, at 40-100 raN. The tension model parameters have

also been slightly modified as follows: annulus solidity = 0.9424; area exponent = -0.6;

and inertia multiplier = 4.1.

The new tension model parameters do not affect significantly the control law and the

deployment response. The addition of the 300-m old tether segment at the end of the new

tether, however, alters the deployment speed profile in the last phase of deployment.

The new parameters are adopted for the new baseline simulations as explained in the

following.
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Simulationresultsfor thenominal case are depicted in Figures 11.15 in which a static

tension of 12.5 mN was adopted for the new tether and 70 mN for the last 300-m old

tether.

Results for the cold case, with TO = 15 mN for the new tether and 70 mN for the old

tether, are shown in Fig. 11.16. Results for the hot case, with TO = 8 mN for the new

tether and 70 mN for the old tether, are shown in Fig. 11.17.

In conclusion, the addition of the old tether does not affect the libration response of the

system during deployment. It does affect significantly the tether speed profile in the last

phase of deployment because of the abrupt change of the tether minimum tension (from

roughly 10 mN to 70 mN) at a time when a high number of brake turns is applied. The

control law compensates by reducing the number of brake turns by 1.5 turns. Deployment

comes to a stop at about 19.78 km and t = 6,560 s when the brake is ramped up.

Finally, a simulation was run to show the effect of heavy tensional noise on the new

nominal case. The tension is assumed to be affected by noise structured as follows: an

additive component of +10 mN, a multiplicative component of +50% (the spectra of these

two components is cut below a frequency of 0.33 Hz), and a saw-tooth noise of +0.5 N

with a period of 30 s active for tether lengths > 17 km. Figure ll.18(a-b) show the

simulation results. The control law performs rather well in the presence of high noise

levels: the final libration amplitude is almost unaffected with respect to the (latest) nominal,

the final velocity is similar to nominal (in which the final phase is significantly impacted by

the presence of the 300-m old tether segment), and the brake actuation is not excessively

jittery.

One important remark, the term "baseline" should not be confused with the term

"reference". The non-linear control law adopted for SEDS-2 necessitates reference profiles

as explained before. The reference profiles for SEDS-2 were derived according to the

values of parameters indicated in Section 11.1.2. The most important of this reference

parameter is the value of the static tension. The reference value of the static tension (To =

30 raN) is closer to the baseline value of the cold case than to the baseline value of the hot

case. However, thanks to the robustness of the control law, especially with respect to low

values of the static tension, the librational response for the cold and hot cases are

completely satisfactory.

143



!

i __

m

0

00

o

0

0

X

-,-4

o

0

A

0

0

0

%0 .4

0

o,I

0

(._/tu) X1TnOlaA (/_) uoTsua±

\.\

\\

_-,I,,,i Ill,, t,, IIlll,,I,l

0

0

0

e4 _

o

L

0 0 0 0

0

A

0

0

0

X

v

0

suanl a>l_aEl (tn2,I) tt'.l._uaq :(_ap) _atLl.

Figure 11.15

144



O

00

'_ o4 O

A

o

O

O

',.O

X

QJ

E

.el

04

o

o co _O o4 o

o

o

o

X

v

q,

E

04

O

(s/m) X]!aOla A (N) u0!su_±

suang 9a_ag

ko

A

O

O

O

e_ lli
-,-I

O

_JD _ Oq

0

0

0

0

E

04

0

Figure 11.16

145



_J_,lJ+,l,,, -- o

-- GJ
m

-- Ill

-- ,_ I__
Ill i

-"3

't --
,I--7 °

A

O

O

O

kO ,-4

X

v

-,-4

e'4

_,,,,I,,,, I,,,, I,, ,, I,,,,_

i,+
-- __:,.+ --

T,,,,I,,,,I,,,

C,

<30

A

0

0

0

X

v

(u

E_

0

(s/uI) Xl.m0IaA (N) uo.tsu_.l.

,+l+,,,I,,,,I,,,,I,,,,I,,

71,,,,11,,,I,,- I,,,,I,,

kD

A

O

O

O

O

O

,-4

@9

0

O

O

X

{Q

[..,

0

suanj_ a>I_aR (cu>1) q1_uaq :(_ap) e_aq.l.

Figure 11.17

146



-'''l'''l'''__" I °_

_.. .. _ _"_" _ _ tad _.t

-,.4

[-,
O4

tO _ _l O rid _ _ O

(s/m) Xl.tooI0 A (N) u0:sua±

71,,,,I,,,,I,jllll,lfl,,

A

O

Q

O

,-4

v

°,'t

O

O O O O

O

A

Q

O

Q

tD ,--I

X

t'M

O

suan% a_Ieagr

Figure ll.18(a)

147



I:lllilll

- __....::':':7-

--..._.-:_,_ T722T- ......... . ....

0

oO

C_

0

! I

_STON qlooi-_eg

0

0

0

,-.M

x

-M

Illlllll llllillll

0

GO

%m

C_

0

A

0

0

0

,-w

x

-,4

'"l'"l' '1'"

i

--_. -......L _.....

___

0

¢-t

0

A

0

0

0

,-4

X

-M

sS!ON oAT'_a!Id_lIn_

Figure ll.18(b)

148



11.2 Control law performance during the flight

11.2.1 Estimate of the maximum libration at the end of deployment

The libration amplitude of SEDS-2 at the end of deployment must be estimated

indirectly because there are no on-board sensors to measure that variable directly.

The estimate of the maximum tether libration is, therefore, carried out with the

following two methods: (1) by analyzing the tether tension variation for constant tether

length (i.e., after deployment); and (2) by simulating the deployment libration dynamics for

the tether velocity and length deployment profiles of the actual flight.

Tension method

The tether tension contains the information of the tether libration amplitude because the

libration modulates the tension at the frequency of the libration. For an inextensible tether

and two-dimensional librations in the orbital plane:

T = [( _)+ f2)2 + f22(3cos20 -1)] L = [( i9+ f2) 2 + 2f22] L
mr

(I 1.19)

where T is the tether tension, mr the reduced mass, 0 the libration angle with respect to the

local vertical, L is the deployed tether length, and X'2the orbital rate. The approximation in

eqn (11.9) is valid for small libration amplitudes. The tension can be further subdivided

into a static part owing to the gravity gradient and a dynamic pan owing to the libration as

follows:

TO = 3f2 2 mrL (11.20.1)

AT =(()+ 2Cl) ()mrL (11.20.2)

where AT is the amplitude of the tension fluctuation due to libration.

For free in-plane librations whereby i9 = "j-3f20, eqn (11.20.2) leads to the following

quadratic equation:

2 ATm = 0 (11.21)
0m 2 + _ 0m - 2,,]-_f22 mr L

from which the maximum libration amplitude 0m can be readily obtained.
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Presently,thetethertensionis availableonly from thetensiometerat thedeployerfor a

durationof approximately15,500sfrom satelliteejection. Theflight tensioncontainsnot

only thelibration-relatedfluctuationsbutalsotensionoscillationsdueto manyothernatural

oscillationsandexternalperturbations.Thelibration component,however,hasadistinct

signaturebecauseof its very longperiodof 3200s.

The librationcomponentwasextractedfrom theflight tensiondatathroughfiltering.

Figure l l.19(a) shows the flight raw tension while Fig. l l.19(b) shows the filtered

tensionafterdeployment.Thecurvesin Fig. 11.19(b)arefor: (1) a 100-srunningaverage;

(2) a recursivelow-passfilter with a cut-off frequencyof about 10.3Hz (i.e., aperiodof

1000s); and(3) a smoothedversionof therecursivefilter output in solid line. Thepeak-

to-peak amplitudeof the tensioncomponentrelatedto libration is about0.3 N which

correspondsto amaximunltensionanaplitudeATm = 0.15 N.

After substitution of the numerical value above, eqn (11.21) yields a maximum

libration amplitude of 3.2 deg.

The estimate of the libration amplitude with the tension method could be improved in

the near future with the release of the load cell and accelerometer data from the satellite.

The duration of the satellite data is longer as it covers about 7 orbits and will, therefore,

enable an even more accurate estinaate of the low-frequency libration-related tension

fluctuations.

Velocity method

The second method adopted to evaluate the amplitude of libration at the end of

deployment is by feeding the tether-dynamics simulator with the length and velocity

profiles from the flight data.

The velocity profile, however, is corrupted because of the failure of one turn counter

after t = 2200 s as shown in Fig. 11.20(a). The tether length flight profile is shown in Fig.

l l.20(b). Furthermore the flight velocity profile exhibits a strong variability at high

frequencies which disturbs the simulator. For the reasons above, the velocity profile must

be cleaned as much as possible of the spurious values due to the turn counter malfunctions

and subsequently filtered to remove the high frequency fluctuations. It is important to note

that the high frequency fluctuations have an almost negligible effect on the low frequency

librations.
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The spuriouscountsof tethervelocity were eliminated by discarding all the velocity

values greater than 10 m/s. Subsequently, the velocity profile was filtered with a 10-s and

a 100-s moving average filter.

Figure 11.21(a) and 11.21(b) show the the 10-s running average velocity and the

associated libration response for the actual orbital parameters of the SEDS-2 mission. The

100-s running average velocity and the associated libration response are shown in Figures

11.22(a) and 11.22(b).

The maximum libration amplitude at the end of deployment for the two case is 4 deg

and 2 deg respectively which are in line with the estimate from the tension method.

The tension method, however, is more accurate because it is a more direct

measurement of libration. In conclusion, it is reasonable to assume at this point in time that

the maximum libration amplitude at the end of deployment was about 3 deg.

This estimate could be validated and maybe refined in the near future when the data

from the load ceils and the accelerometers on board the satellite become available.
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11.2.2 More on the performance of the control law

The deployment of SEDS-2 stopped when the brake was ramped up to its maximum

number of turns equal to 6. The ramping up started at t = 6560 s from ejection and

terminated at t = 6590 s. The ramping up from about 3 turns to 6 turns of the brake post

took approximately 30 s due to the brake speed of 0.1 turn/s. At t = 6560 s, the tether

longitudinal speed was 0.018 m/s and the (corrected) final length was 19,745 km.

Because of the failure of 1 turn counter at t = 2200 s and a tether length of 3.3 km, this

final tether length has been adjusted by taking into account the =380 spurious turn counts

computed by the remaining turn counter.

It is remarkable to see that the actual final value of the tether length is only 35 m

shorter of the 19,780 m estimated before the flight for the nominal deployment (see Section

11.1.5). The deployment stop shortly before reaching 20 km should be attributed to the

300 m segment of old tether that forms the last portion of the tether. This segment of tether

has much higher friction than the rest of the tether.

The final portion of the deployment was sufficiently smooth to provide a very gentle

ride for the satellite without any loss of tether tension.

We would like to stress the excellent behavior of the control law notwithstanding the

strong fluctuations of the velocity as measured by the turn counter(s) which were caused

by the detected failure of one turn counter. The filtering and numerical technique for

evaluating the velocity adopted in the control law provided a smooth actuation of the brake

notwithstanding the high noise levels in the turn counts and turn rate.

The brake actuation, as shown in Fig. 11.23, was not jittery for most of the

deployment. The more jagged behavior of the brake for t > 5300 s can be attributed to the

multiple sling/scrub transitions that occur for a small diameter of the tether spool (i.e., at

the end of deployment and for small velocities the tether starts scrubbing on an aluminum

flange with a consequent steep increase of the friction) and to the change in winding pattern

of the tether spool.

The estimation of the minimum deployment tension is related to refining of the tension

model. The tension model adopted for the pre-flight simulations was adequate but it is not

refined enough to provide a high fidelity fit between the flight data and the simulated data.

At this point, the minimum tension can be estimated to be in the range 10-20 mN. The

nominal value of the minimum tension from the most recent ground tests was in the range
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10-15mN. Consequently,theactualdeployment,from thefriction standpoint,wasclose
to nominal.

The control law for SEDS-2wasbasedon predefinedreferenceprofiles for length,

lengthrate and brake. It is worth mentioningthat nominal deploymentdoesnot mean
referencedeployment.The referencefor SEDS-2wasderivedfor a minimum tensionof

30mN. This choicewasbasedon thedataof SEDS-1,whichexhibiteda higherminimum

tension,andon theeffort for increasingtherobustnessof thecontrol law with respectto

variations of the minimum tension. The successfulperformanceof SEDS-2 during
deploymentprovedthatthecontrollaw wasindeedrobust.

11.3 Conclusions on SEDS-2 control law

The (closed-loop) control law of SEDS-2 was developed for reducing the final

libration amplitude to less than 10° as opposed to the 57 ° libration amplitude exhibited by

SEDS-1 during its flight.

The control law was designed for robustness with respect to variations or uncertainties

of the tension model parameters and of the brake response. Specifically, a variation of the

most influential parameter, the minimum tension, between 10 mN and 45 mN was

estimated to cause a final libration amplitude ranging from 2 deg to 10 deg, respectively.

Consequently, the best performance had to be expected for low values of the minimum

tension. The control law was also robust with respect to uncertainties of the friction

coefficient, which affects the brake response, of +50% and almost immune to random

tensional noise.

During the flight, the control law of SEDS-2 performed as expected notwithstanding

the detected failure of one turn counter at about t = 2200 s and a tether length of 3.3 km. A

final deployment length of 19,745 m was reached at t = 6560 s with a final deployment

speed of 0.018 m/s.

The maximum libration amplitude at the end of deployment is presently estimated at

about 3 deg with respect to the local vertical. A value which is also consistent with the

expected performance for a minimum tension of 10-20 mN. All the success criteria

established before the flight were met with anaple margin. The control law performed at the

very top of the pre-flight expectations.
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